比特派钱包最新版|mirna

作者: 比特派钱包最新版
2024-03-17 09:28:22

micro RNA_百度百科

o RNA_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心micro RNA播报讨论上传视频生物学术语收藏查看我的收藏0有用+10MicroRNA (miRNA) 是一类由内源基因编码的长度约为22 个核苷酸的非编码单链RNA分子,它们在动植物中参与转录后基因表达调控。在动植物以及病毒中已经发现有28645个miRNA 分子(Release 21: June 2014) 。大多数miRNA 基因以单拷贝、多拷贝或基因簇(cluster) 的形式存在于基因组中(Lagos2Quintanaet al, 2001;Lau et al,2001) 。miRNA可以通过破坏靶mRNA的稳定性、抑制靶mRNA的翻译来对靶mRNA发挥调控作用。 [4]中文名微小核糖核酸外文名MicroRNA 性    质非编码单链RNA分子缩    写miRNA存在形式单拷贝、多拷贝或基因簇载    体动植物以及病毒目录1简介2MicroRNA3特征4功能▪MicroRNA的过表达▪MicroRNA的下调5作用方式6识别方法7siRNA8待解决问题9研究工具▪分离▪探针制备▪检测10功能分析11miRNA展望简介播报编辑micro RNAMicroRNA (miRNA) 是一类内生的、长度约为20-24个核苷酸的小RNA,其在细胞内具有多种重要的调节作用。每个miRNA可以有多个靶基因,而几个miRNA也可以调节同一个基因。这种复杂的调节网络既可以通过一个miRNA来调控多个基因的表达,也可以通过几个miRNA的组合来精细调控某个基因的表达。据推测,miRNA调节着人类三分之一的基因。最近的研究表明大约70 %的哺乳动物miRNA 是位于TUs区( transcriptionunits , TUs ) ( Rodriguez et al ,2004) , 且其中大部分是位于内含子区( Kim &Nam , 2006) 。一些内含子miRNA 的位置在不同的物种中是高度保守的。miRNA 不仅在基因位置上保守, 序列上也呈现出高度的同源性(Pasquinelli etal , 2000 ; Ruvkun et al , 2001 ; Lee & Ambros ,2001) 。miRNA 高度的保守性与其功能的重要性有着密切的关系。miRNA 与其靶基因的进化有着密切的联系, 研究其进化历史有助于进一步了解其作用机制和功能。MicroRNA播报编辑MicroRNA(miRNA)是一类内生的、长度约20-24个核苷酸的小RNA,几个miRNAs也可以调节同一个基因。可以通过几个miRNAs的组合来精细调控某个基因的表达。据推测,miRNA调节着人类三分之一的基因。MicroRNA存在多种形式,最原始的是pri-miRNA,长度大约为300~1000个碱基;pri-miRNA经过一次加工后,成为pre-miRNA即microRNA前体,长度大约为70~90个碱基;pre-miRNA再经过Dicer酶酶切后,成为长约20~24nt的成熟miRNA。实际研究中,pre-miRNA应用最早,也最广泛,很多商业化的MicroRNA库都是pre-miRNA形式的。近几年来,研究发现microRNA的双臂对成熟miRNA的形成有着十分重要的作用,所以天然的pri-miRNA形式越来越多地被研究者采用。MicroRNAs(miRNAs)是一种大小约21—23个碱基的单链小分子RNA,是由具有发夹结构的约70-90个碱基大小的单链RNA前体经过Dicer酶加工后生成,不同于siRNA(双链)但是和siRNA密切相关。据推测,这些非编码小分子RNA(miRNAs)参与调控基因表达,但其机制区别于siRNA介导的mRNA降解。第一个被确认的miRNA是在线虫中首次发现的lin-4 和let-7,随后多个研究小组在包括人类、果蝇、植物等多种生物物种中鉴别出数百个miRNAs。特征播报编辑已经被鉴定的miRNAs据推测大都是由具有发夹结构,约70个碱基大小形成发夹结构的单链RNA前体经过Dicer酶加工后生成的,有5’端磷酸基和3’羟基,大小约21—25nt的小分子RNA片段,定位于RNA前体的3’端或者5’端。3个研究小组分别从线虫、果蝇和Hela细胞中鉴定的100个新miRNAs中,有15%跨越线虫、果蝇和哺乳动物基因组具有高度的保守性(只有有1—2个碱基的区别)。Lau 和Bartel 实验室的同事更加认为:所有的miRNAs可能在其他物种中具有直向同源物(Ortholog,指那些起源于同一祖先,在不同生物体中行使同一功能的基因群就可比作为一个门类,这些类似的基因被称为“直向同源物”)。micro RNABantam 最早被认为是果蝇中参与细胞增殖的一个基因位点。已知几个包含增强子的转座子插入跨越这个位点的一段12.3kb区域会导致果蝇的眼和翅重复生长,而由转座子介导的一段跨越该位点的23kb片断缺失则导致突变果蝇个体小于野生型果蝇。Cohen和同事用一段3.85kb的片断导入21kb片断缺失的果蝇中使其恢复原来的大小。但是奇怪的是表达这个3.85kb片断中的EST却没有同样的效果。Cohen将这个片断和疟蚊Anopheles gambiae的同源序列进行比较,发现一段90bp的高度保守区,经过RNA folding program (mfold)发现这个保守序列可以形成发夹结构,使得这个区段很象是一个miRNA的前体。这个结果经过Northern blot证实突变果蝇的幼体缺少一个21bp的bantam miRNA ,用这个90bp的mRNA前体经过一系列的“功能缺失”—“功能恢复”实验,证实 bantam miRNA在细胞增殖中的作用。研究人员用计算机程序检索在hid mRNA的3’非编码区找到了bantam的3个潜在的结合位点( hid是果蝇中一个诱导凋亡的基因),并证实 bantam miRNA抑制hid 的翻译而非转录。miRNAs的表达方式各不相同。部分线虫和果蝇的miRNA在各个发育阶段的全部细胞中都有表达,而其他的miRNA则依据某种更为严谨的位相和时相的表达模式(a more restricted spatial and temporal expression pattern)——在不同组织、不同发育阶段中miRNA的水平有显著差异。功能播报编辑科学家开始认识到这些普遍存在的小分子在真核基因表达调控中有着广泛的作用。在线虫,果蝇,小鼠和人等物种中已经发现的数百个miRNAs中的多数具有和其他参与调控基因表达的分子一样的特征——在不同组织、不同发育阶段中miRNA的水平有显著差异,这种miRNAs表达模式具有分化的位相性和时序性(differential spatial and temporal expression patterns),提示miRNAs有可能作为参与调控基因表达的分子,因而具有重要意义。第一个被确认的miRNA——在线虫中首次发现的lin-4和let-7,可以通过部分互补结合到目的mRNA靶的3’非编码区(3’UTRs),以一种未知方式诱发蛋白质翻译抑制,进而抑制蛋白质合成,通过调控一组关键mRNAs的翻译从而调控线虫发育进程(reviewed in Pasquinelli 2002)。bantam miRNA是第一个被发现有原癌基因作用的miRNA。除了lin-4、let-7,已知还有一些miRNAs可能参与在细胞分化和组织发育过程中起重要作用的基因的转录后调控,例如mir-14、mir-23 等。在植物miRNAs的研究中有两条线索提示miRNAs可能参与植物的发育过程。一是在carpel factory (car) 突变株中3个miRNAs的表达水平显著下降。CARPEL FACTORY 是一个类似Dicer的酶,参与植物的发育,其缺失突变株表现为胚胎和叶片发育的缺陷。实验结果提示这种缺陷是由于缺少miRNAs加工而造成的。多数的植物miRNAs在某些特定组织中高水平表达也提示他们可能参与了植物组织的发育。对一部分miRNAs的研究分析提示:miRNAs参与生命过程中一系列的重要进程,包括早期发育(Reinhart 2000),细胞增殖,细胞凋亡,细胞死亡(Brennecke 2003),脂肪代谢(Xu 2003)和细胞分化(Kawasaki 2003)。此外,一个研究表明,2个miRNAs水平的下降和慢性淋巴细胞白血病之间的显著相关,提示miRNAs和癌症之间可能有潜在的关系(Calin 2002)。由于miRNAs存在的广泛性和多样性,提示miRNAs可能有非常广泛多样的生物功能。尽管对miRNA的研究还处于初级阶段,据推测miRNAs在高级真核生物体内对基因表达的调控作用可能和转录因子一样重要。有一种看法是:miRNAs可能代表在一个新发现的层次上的基因表达调控方式。然而,大多数miRNAs的功能仍然是个谜。MicroRNA的过表达MicroRNA的过表达MicroRNA存在多种形式,最原始的是pri-miRNA ,长度大约为300-1000个碱基pri-miRNA经过一次加工后,成为pre-miRNA 即microRNA前体,长度大约为70-90个碱基;pre-miRNA再经过Dicer酶酶切后,成为长约20-24nt的成熟miRNA 。实际研究中,pre-miRNA应用最早,也最广泛,目前很多商业化的MicroRNA库都是pre-miRNA形式的。近几年来,研究发现microRNA的双臂对成熟miRNA的形成有着十分重要的作用,所以天然的pri-miRNA形式越来越多地被研究者采用。MicroRNA的下调化学合成的miRNA inhibitors,用于下调目的细胞中的miRNA,以实现loss-of function研究。如果您需要进行长期、稳定的miRNA下调,则可以选用载体形式的miRNA inhibitor。其转染效率高,下调效果好,可以实现对目的miRNA的长期、稳定的下调。MicroRNA的下调载体形式的miRNA inhibitor,采用的方法如miRNA sponge法,这也是目前SCI文献中用的较多的一种方法。作用方式播报编辑microRNA-RISC对靶基因mRNA的作用主要取决于它与靶基因转录体序列互补的程度,有三种方式。第一种是切断靶基因的mRNA分子——miRNA与靶基因完全互补结合,作用方式和功能与siRNA非常相似,最后切割靶mRNA。在植物中,大部分miRNA都以这种方式,靶基因mRNA断裂后,无poly(A)的分子的3‘ 端加上多个U并很快降解,含poly(A)的分子能稳定存在一段时间(如拟南芥miR-171)。在植物中目前有一个miRNA和3个潜在的目标靶基因完全互补(这些scarecrow 基因编码潜在的转录因子),尽管还不清楚这些基因是否就是miRNA的目标靶,这仍是第一次发现miRNA 和其潜在的目标靶完全互补,也提示miRNA可能包含和siRNA类似的作用方式。第二种是抑制靶基因的翻译——作用时与靶基因不完全互补结合,进而阻遏翻译而不影响mRNA的稳定性,这种miRNA是目前发现最多的种类(如线虫lin-4)。而在植物中极少数的miRNA通过此方式来抑制靶基因。第三种是结合抑制——具有以上两种作用模式:当与靶基因互补结合时,直接靶向切割mRNA;当与靶基因不完全结合时,起调节基因表达的作用。识别方法播报编辑多个研究小组采用生物化学结合以及生物信息学的方法开展对miRNAs的研究工作。由于据推测都是由Dicer酶降解RNA得到的,21—23个碱基大小、有5’端磷酸基和3’羟基的RNA片段,有的实验室采用改良的定向克隆方法来筛选具有相同特征的小分子——筛选一定大小的RNA分子,连接到3’和5’的适配子(adapters),逆转录并通过PCR扩增、亚克隆并测序。miRNA前体在基因组上的定位和聚类是通过向基因组数据库查询进行。这个方法有助于判断miRNAs是否是mRNAs、tRNAs、rRNAs等分子的降解产物。有的实验室通过一种RNA folding program ’mfold’ 来判断C. elegans 和C. briggsae 之间的高度保守区域是否含有潜在的miRNA前体,然后用Northern Blots的方法来确定这些miRNAs是否真的表达了。尽管有数百个miRNAs通过生化或者是生物信息学的方法被鉴别出来,已经鉴别出来的miRNAs只不过是沧海一粟,由于很多已经鉴别出来的miRNAs是从单个克隆中鉴别出来的,所以可以假设还有很多miRNAs在分离和鉴定过程中被“漏掉”了,测序工作还远远不够。siRNA播报编辑miRNA和siRNA之间的关系令人迷惑。从表面上说,一个是非编码的单链小分子RNA,在进化上高度保守,通过翻译抑制调控基因表达;另一个是针对编码区的双链小分子RNA,每个转录本都可能有很多个siRNAs,是通过降解目标靶,在转录后调控基因表达。由于每个mRNA模版可能产生很多个siRNAs,要给每个siRNA定一个基因的名字就很困难。miRNA是进化进程中高度保守的,因此给直向同源物一个同样的名字可能有助于了解他们的功能,而给另一个物种中一段无关的序列一个同样的名字就容易造成混乱。然而,据推测miRNAs通常是由较大的(70-­90 nt)的茎环结构(发夹结构)前体经Dicer酶切割得到的,而Dicer同样负责将长双链RNA切割为siRNA,而且二者的长度也差不多,同样有调控基因表达功能。因而这两类小分子RNA之间的关系格外令人关注。两个广为人知的miRNA——在线虫中首次发现的lin-4 和let-7,通过一种未知方式诱发蛋白质翻译抑制从而抑制蛋白质合成。这种结合并不诱导mRNA靶的降解,就是说作为翻译抑制子本身不影响对应mRNA的丰度,其原因据推测是由于miRNA和结合位点之间不完全互补。这就区别于siRNA的介导的mRNA的降解。但是其他一些miRNAs可能以类似siRNA的方式介导目的RNA的降解。实验表明引入和let-7目的mRNA靶完全互补的miRNA会诱导mRNA靶的降解。还有实验结果表明一些miRNA,包括在植物中发现的Scarecrow miRNA,能结合完全互补的mRNA链从而降解mRNA序列,抑制蛋白合成。这提示miRNAs可以和siRNAs一样作用,这两种小分子RNA作用通路可能有重叠的部分。这种重叠同样提示siRNAs可能也有和miRNAs同样的功能。一个很有趣的实验证实这个观点:Doench和同事挑选一个已知在体内可以有效使CXCR4基因沉默的siRNA,然后在荧光素酶报告基因的3’端插入对应的CXCR4结合位点——其中一个拷贝是插入一个完全匹配的CXCR4结合位点,另一个拷贝插入4个只有3’和5’端匹配,而中间不同的CXCR4结合位点,这样选定的siRNA就不能完全结合到这个结合位点——中间形成一个突起的不匹配的环。将这两个拷贝转入Hela细胞并用siRNA诱导基因沉默。结果很有趣——两个实验都录得荧光素酶活性下降了超过10倍,RT-PCR和Northern分析证实,第一个实验的荧光素酶转录本下降了超过10倍,这正是正常的siRNA介导的RNAi反应,目标靶mRNA降解导致表达水平的下降,而第二个实验中荧光素酶转录本仅仅下降1.2倍,这种目的基因表达水平下看起来象源于miRNA介导的翻译抑制降,而不是siRNA介导的影响mRNA的稳定性导致。实验表明:siRNA可能以miRNA的方式作用于mRNA。实验人员还进行了另一个实验:改变第二个实验中的不匹配环的碱基序列看起来不影响抑制效果,但是siRNA和报告基因上的结合位点的匹配程度越高抑制效果越好,增加siRNA的量,抑制效果越好——这一点和siRNA抑制的情况一样——不同的是:完全匹配的结合位点(siRNA作用方式)可以单独起作用而相互不影响,而增加不完全配对的结合位点(注意在第二个实验中用了4个CXCR4结合位点)的个数对翻译抑制有显著的加乘作用。在哺乳动物细胞中还没有找到内源的siRNA,外源的siRNA介导的RNAi作用正是一种抵御机制。而miRNAs则广泛存在于哺乳动物细胞中,从理论上推测可能参与多种调控作用。这两种小东西的作用机制和相互关系的本质就显得更加扑朔迷离。如何在实验中正确鉴定siRNA和miRNA,甚至是其他的小分子RNA都成为一个值得关注的问题。待解决问题播报编辑miRNAs在多个物种中广泛被发现,而且在进化上高度保守。这些“小玩意儿”留给我们一大堆谜团:miRNA的确切功能是什么?它的目标靶是什么?作用机制是什么?也许需要对植物或者线虫的基因组进行miRNAs突变株的筛选,在果蝇中可以用targeted-disruption缺失miRNA序列。对miRNA突变株伴随的表型缺失进行研究,有助于解释miRNAs的功能。正如Phillip Zamore说的:“如果miRNAs在进化的进程中如此高度保守而没有任何实际功能,那真是大自然拿科研人员开涮——而且是一个残酷的玩笑”。研究工具播报编辑随着小分子RNA日益受到研究人员的重视,很多研究小分子RNA的新方法不断推出。分离由于小分子RNA可能参与分化、发育、组织生长、脂肪代谢等生理过程,在不同的组织和发育阶段的表达水平有所不同,进一步了解小分子RNA的生物功能需要确定其在各种生物样品中的表达水平,因而需要一种精确的定量纯化方法,从而得到可信的数据。现行的RNA纯化方法包括有机溶剂抽提+乙醇沉淀,或者是采用更加方便快捷的硅胶膜离心柱的方法来纯化RNA。由于硅胶膜离心柱通常只富集较大分子的RNA(200nt以上),小分子RNA往往被淘汰掉,因而不适用于小分子RNA的分离纯化。有机溶剂抽提能够较好的保留小分子RNA,但是后继的沉淀步骤比较费时费力。mirVana miRNA Isolation Kit是采用玻璃纤维滤膜离心柱(glass fiber filter,GFF),既能够有效富集10mer以上的RNA分子,又能够兼备离心柱快速离心纯化的优点,是一个不错的选择。对于特别稀有的分子,由于需要分离大量RNA而导致高背景而降低灵敏度,还可以进一步富集10mer到200bp的小分子RNA来提高灵敏度。探针制备方法其实很简单:只需要准备目的基因的一小段寡核苷酸序列,3’端另外增加8个和T7启动子互补的碱基,将这段寡核苷酸和T7启动子引物退火,用Klenow大片断补齐得到双链的转录模版,然后用T7 RNA聚合酶、rNTP和标记物混合,体外转录得到标记的小分子RNA探针。这种方法可以快速制备各种标记(同位素、非放射性标记均可)的小于100nt的小分子RNA探针,适用于包括RPAs,Northerns 和原位杂交等各种方法检测小分子核仁RNA( small nuclear RNA,snRNA),small interfering RNA (siRNA),,micro RNA (miRNA)和 mRNA。非放射性标记的探针还可以用于原位杂交研究miRNA或者mRNA在组织中的分布。检测由于小分子RNA是一类很小的分子,部分小分子RNA表达水平可能很低,因而需要极为灵敏而定量的分析工具。由于其分子很小,用RT-PCR的方法来定量研究非常困难,多数研究人员采用Northern Blots——一种技术复杂而费力的方法来检测小分子RNA的存在。传统的Northern Blot的方法是是用探针检测固相支持物(膜)上的目标分子,由于用探针检测液相中的目标分子远比检测固相中的目标更为灵敏,生物通在这里为大家推荐一种基于核酶保护分析方法改进的新方法——将同位素标记好的小分子RNA探针和待检测样品混合杂交,未杂交的RNA和多余的探针用单链核酸酶消化,然后使核酸酶失活,并纯化杂交的RNA分子,最后通过变性胶电泳放射自显影检测结果。这个基于液相杂交的新方法不但操作简单而快速,而且灵敏度极高——可以半定量检测少至10ng总RNA模版中的小分子RNA,或者说,可以检测attomole (10-18 mol)级别的靶目标。灵敏度是Northern Blot的100倍。除此之外,研究人员还可以在同一个样品中同时检测多个小分子RNA和长的RNA模版。应该说,这个灵活巧妙的设计可以为从事小分子RNA实验的研究人员带来不少方便。总而言之,无论是siRNA, miRNA, snRNA还是其他的小东西,小分子RNA研究的不断深入将帮助我们揭示更多生命的奥秘。从生物学机理上来说,miRNA有成为肿瘤标志物的优势,它是肿瘤细胞主动分泌的,随着肿瘤细胞的生成、凋零,miRNA的表达量一直在变化,所以每种miRNA的表达量代表了在某一刻人类体内健康或者疾病的信息。 [1]MiRXES在人体这2000多种miRNA中,他们找出了与胃癌高度相关的12种miRNA,当人体中出现胃癌细胞时,这12种miRNA在血液中的浓度会出现异常。 [2]2015年,由朱兴奋和觅瑞创始人周砺寒、邹瑞阳研发的胃癌早筛试剂盒获得专利。这项技术让miRNA检测走向了癌症早筛的临床应用。 [3]功能分析播报编辑MicroRNA功能分析miRNA 的上调可用于鉴定功能获得表型;抑制或下调可以研究功能缺失表型。上调与下调的结合可用于鉴定被特定miRNA 调节的基因,以及特定miRNA 参与的细胞进程。主应用包括:◇miRNA 靶定位点的鉴定和验证◇筛选调节某个特定基因表达的miRNAs◇筛选影响某个特定细胞进程的miRNAsmiRNA展望播报编辑miRNA在细胞分化,生物发育及疾病发生发展过程中发挥巨大作用,越来越多的引起研究人员的关注。随着对于miRNA作用机理的进一步的深入研究,以及利用最新的例如miRNA芯片等高通量的技术手段对于miRNA和疾病之间的关系进行研究,将会使人们对于高等真核生物基因表达调控的网络理解提高到一个新的水平。这也将使miRNA可能成为疾病诊断的新的生物学标记,还可能使得这一分子成为药靶,或是模拟这一分子进行新药研发,这将可能会给人类疾病的治疗提供一种新的手段。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

miRNA的功能及其作用机制 - 知乎

miRNA的功能及其作用机制 - 知乎首发于非编码RNA切换模式写文章登录/注册miRNA的功能及其作用机制Ai科研绘图-有课​miRNA的功能miRNA的作用机制1、RNA诱导沉默复合体(RISC)的形成1.2、miRNA诱导的基因沉默模式及其相关机制miRNA的功能很多研究证明 miRNA是通过参与调节其下游基因翻译过程面发挥其生物学功能。比如,Lai等观察到果蝇miR-2a、miR-2b、miR-6、miR-11、miR-13a及miR-13b等的5'端6~8nt序列具有一定的关联性,它们均可与K框(Kbor)的相同序列互补K框是作为负调控果蝇增强子断裂( enhancer split)复合体基因的3'UTR序列中的保守基因序列。对于一些带有K、GY或Brd框的基因(GY和Brd框是类似于K框的其他基因3'UTR中的控制元件),可以被 miRNA识别并与之碱基配对。其实,基于 MIRNA作用机制,可将其分成两个区域,其5'端的核苷酸代表了“姓”( family)区域,该区域匹配这些框中的一个,而其他的区域类似“名”( forename),特异白匹配特定的靶,在动物中,单个mRNA可识别多个mRNA靶标,一个mRNA靶标可被多个 miRNA识别。根据miRNA保守的5'端“种子”顺序同源性搜索分析,推测人类基因组中约三分之二的蛋白质编码基因受 miRNA的调控。已知所有动物 miRNA作用的mRNA靶点均在其3'UTR。miRNA的作用机制 miRNA对靶基因的作用机制一直是众多研究人员的关注热点。最早被发现的两个miRNA ——lin4和let-7被认为是通过不完全互补结合到基因mRNA 3' UTR,以一种未知的方式抑制蛋白质翻译,进而抑制蛋白质合成,阻断mRNA的翻译过程。后来的研究也发现,多个果蝇 miRNA和它们的基因mRNA的 3' UTR 存在部分同源。但由于 miRNA与其目标靶之间的互补是不完全的,用生物信息学的方法鉴定 miRNA的目标位点并非易事。在植物中,由于 miRNA与潜在的基因是完全互补的,使得植物的miRNA预测相对较容易。但这些预测基因是否就是 miRNA的靶基因,还需要作进一步验证。 研究表明, miRNA基因是一类高度保守的基因家族,按其与基因的作用模式不同,主要可分为以下3种类型:①作用时与靶标基因完全互补结合,作用方式和功能与 siRNA非常类似,最后切割mRNA,常见于植物。②作用时与靶标基因不完全互补结合,进而阻止翻译而不影响mRNA的稳定性,这是目前发现最多的作用模式,常见于动物。(如下图)(图一)③具有以上两种作用模式,当与标基因完全互补结合时,直接向切割mRNA,当与标基因不完全互补结合时,阻止基因翻译。(如上图) miRNA对基因的调控,正如前文所述(一文读懂miRNA的生物合成), Pre-miRNA由 exportin-5输出至胞浆中,然后释放 Pre-miRNA. Pre-miRNA与Dicer互补结合,产生长度为22nt的不完全配对的双链RNA。最后,双链中只有一条单链与RNA诱导的RISC结合,随后与把mRNA互补。而 miRNA*释放后则被降解。对于 miRNA来说,发挥对靶基因的调控作用, Dicer和RISC是必不可少的。因为 Dicer是产生 miRNA不可或缺的,而RISC则是 miRNA实现功能的载体。1、RNA诱导沉默复合体(RISC)的形成 2001年, Elbashir等在《基因发育》杂志( Genes Devolopment)发表一篇文章,介绍了在果蝇体外系统中加入合成21~23nt的 siRNA,使之能有效降解同源mRNA他们发现当siRNA浓度增加到一定阈值时,mRNA降解程度不再继续增加,提示在果蝇裂解液中含有一定数量RNAi所需蛋白因子。这些RNAi所需蛋白因子是一种复合物,被定义为RNA诱导的沉默复合体(RISC)。研究发现,RISC是一种核糖核蛋白,主要由RNA和蛋白质成分组成。其中的RNA即是siRNA,而蛋白质成分主要为AGO22、VIG、dFXR以及Dmp68等,并且,这些蛋白质成分是组成RISC所必须的,并参与RNAi过程。 miRNA介导的RISC简称为 miRISC( miRNA-containing RNA induced silencing coplex),也被称作miRNA核糖核蛋白复合体( miRNP)。miRISC复合体除了包括成熟 miRNA外,还包含Dicer蛋白和多种其他相关蛋白。其与RISC结合的原理与siRNA类似,通过miRNA: miRNA*双体两端热力学稳定性的分析,可以分为两类结合:优势结合与等势结合。以 dsRNA为例,当双链中两根支链的稳定性相似或相同时,它们结合进入RISC的概率也相似或相同,因此称为等势结合(如图一所示)。当双链中支链的稳定性相对较弱时,解旋会从稳定性弱的一支解开dsRNA,从而会偏向性地产生一条结合到RISC复合体上,这类结合称为优势结合,未进入RISC的互补链RNA会很快降解(如图二所示)。(图二) RISC是 miRNA参与靶基因调控过程中不可或缺的载体。在 miRISC复合体中, Dicer对Pre-miRNA的处理与双链螺旋的解旋是偶联进行的。通常,只有一条链进入 miRISC,具体选择双链中哪一条链取决于碱基热动力学稳定性等因素。不进入RISC的 miRNA链被称之为伴随链( passenger),并被冠以星号(*),具有更低的稳定性,通常情况下被降解掉。但在某些情况下,两条链均具有活性,成为针对不同靶基因mRNA的功能 miRNA。RISC是具有多轮催化效应的酶。在这一过程中,其核心组分Ago2发挥重要作用。因此,在组成 miRISC的蛋白质中,Ago蛋白家族成员在RISC功能中处于中心地位,Ago蛋白家族在哺乳动物中有8种,分为Ago和PIWI两个亚家族。人Ago亚家族有四种: hagol-4;PIW亚家族有HIWI、HILI、 PIWIL3、HIWI2四种。果蝇有两种Ago蛋白,分别是Agol和Ago2。(图三) Ago家族蛋白为一类分子质量约为100kD的蛋白质,属于进化保守的家族,包含有PAZ和Piwi两个保守的RNA结合结构域,是目前唯一一种在所有RNAi和 miRNA通路中均可发现的蛋白。PAZ结构域负责结合引导链( guide) miRNA的3' 端突出的2个核苷酸或者单链RNA的3'-OH;PIWI结构域则负责组装核酶H( ribonuclease- H),并与 miRNA 5'端结合。Ago蛋白与 miRNA结合使其朝向正确,以便与靶基因mRNA作用。Ago蛋白可能招募其他蛋白行使翻译抑制功能;一些Ago蛋白直接切割靶转录本。(如图三所示) Ago家族有不同的突变种和表型。研究发现,秀丽线虫有24个Ago蛋白,果蝇中有5个Ago蛋白,乳动物有8个同源蛋白Ago蛋白,所以RISC会呈现不同类型或者调控方式。根据Ago的不同,可以将RISC分为切割RISC与非切割RISC两类。对于一个特定的RISC是否切割一个mRNA分子,主要取决于以下几个方面:目标mRNA的特性(主要包括分子结构及数量等);RISC的类型必须为切割RISC;组织中,RISC的切割速度;miRNA与靶基因必须满足一定的匹配程度;miRNA的来源。 在人基因组中含有的8个AgO蛋白中,有4个成员存在于所有乳动物细胞中,在人类这类蛋白称为E1F2C/ hAgo;PIWI存在于精细胞和细胞中,RISC的其他组成分还包括人类免疫缺陷病毒活化反应RNA结合蛋( human immunodeficiency virus tran activating response RNA binding protein,TRBP),干扰素诱导的蛋白激酶活化因子(wro rein activator of the interferon induced protein kinase,PACT),运动神经元存活复合体( survival of motor neurons complex),脆性X智障蛋白( fragile X mental retardation protin,FMRP)和 Tudor葡萄球菌核酸酶结构域包含蛋白( Tudor staphylococcal nuclease domain contining protein) 等。RISC的结构特征主要包含以下几个方面:(1)成熟的 miRNA与RISC结合。RISC含Dicr及其他蛋白质。RISC又称 miRNP,和 miRNA结合的RISC称为“ miRISC"。(2) Dicer 加工pre-miRNA与RNA双链解旋偶联,解旋的 miRNA只有一条单链保留在RISC中。(3) argonaute(Ago)是RISC的核心成分,为 miRNA诱导的基因沉默所必需。Ago含有两个RNA结合域:PAZ,与成熟 MIRNA的3' 端结合;PIWI,类似核糖核酸酶-H,和引导链5'端结合。两者共同将成熟 miRNA定向,使其和靶mRNA互补。(如图四所示)(图2、miRNA诱导的基因沉默模式及其相关机制 miRNA靶向互补 mRNAs导致目的mRNA切降解的过程被称为转录后基因沉默(ot ranscriptional gene silencing,PTGS)。有效的PTGS需要RISC对mRNA转录本的切割 。 miRNA可以指导RISC在转录后水平下调基因的表达——mRNA的降解或翻译抑制。采取何种沉默方式是由mRNA的特性所决定的。如果mRNA能够与miRNA完全互补,该mRNA就会被RISC特异地降解;如果mRNA不能与 miRNA完全互补,仅在某个位点与 miRNA互补,那么RISC就不会特异地降解mRNA,只是阻止mRNA作为翻译的模板,使之不能合成蛋白质。在动物中,多数情况下复合物中的单链 miRNA与mRNA的 3' UTR不完全互补配对,从而阻碍对该mRNA的翻译,并以此来调控基因表达,但不影响mRNA的稳定性。如线虫中的 miRNA lin-4就是以这种方式调控它的两个靶基因——lin-14和lin-28的翻译。另一种主要的作用方式则与 siRNA诱导的转录后基因沉默的PTGS相类似,当 miRNA与mRNA完全互补配对时,Ago2蛋白可通过对mRNA的切割直接导致其降解,完成基因沉默调控。 此外, miRNA诱导的基因沉默还存在一些其他的方式,如 miRNA还能通过组氨酸修饰和启动子区的DNA甲基化影响基因的表达;miRNA与 5' UTR相互作用然后上调基因表达,由胞浆转运入核,以及近些年来发现的 miRNA能加速mRNA脱腺苷酸化( accelerated deadenylation)而抑制基因表达等多种作用模式。miRNA诱导基因沉默的机制可以归纳为以下两个主要方面:(1) miRNA的翻译起始抑制与翻译起始后抑制 miRNA对翻译起始抑制的相关机制主要有如下一些观点:首先, miRNA可通过抑制核糖体的组装来阻断翻译起始,进而起到对翻译过程的抑制作用。miRNA的抑制作用需要靶mRNA具有m7G帽子结构成为支持这一理论的重要依据,由此可以推断 miRISC可能通过对翻译起始复合物形成抑制而发挥作用;Ago2中间结构域具有结合m7G帽子的活性,Ago2通过 对miRNA招募靶mRNA的 3' UTR,从而与起始复合物eIF4E/G竞争性结合m7G帽子,最终发挥对翻译起始复合物的抑制作用。还有一些观点认为,通过影响靶mRNA脱腺嘌呤反应,导致其 polyA尾缩短,从而使mRNA与 polyA结合蛋白( polya binding protein,PABP)受阻,进而影响蛋白质翻译的起始。 研究还表明,一些被 miRNA作用后的mRNA可以与多核糖体偶联,这些核糖体在翻译中处于非常活跃的状态。此外, miRNA的抑制作用还可能发生在翻译起始之后,这主要是由于其翻译过程的抑制作用是通过内部核糖体进入位点( internal ribosome entry site,IRES)什么是IRES,而不是依赖 MRNA m7G帽子来发挥作用。其他作用方式,比如对新生多肽链的翻译同步降解等目前还没有定论,有待进一步证实。(2) miRNA介导的mRNA衰减(降解) miRNA可诱导与其不完全配对的犯mRNA衰减(降解)。通过Ago蛋白定位于如P小体( processing bodies,P- bodies)等的RNA颗粒( RNA granules)中,这些颗粒中包含有mRNA降解的酶。这也可能是 miRNA介导mRNA衰减的一个重要途径。 发布于 2021-09-04 23:51miRNA分子生物学基因组​赞同 147​​7 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录非编码

一文秒懂microRNA - 知乎

一文秒懂microRNA - 知乎首发于解螺旋切换模式写文章登录/注册一文秒懂microRNA酸菜​科研等 2 个话题下的优秀答主本文首发于“解螺旋”微信公众号转载请注明:解螺旋·临床医生科研成长平台酸菜今天可是有点大跌眼镜,以科普著称的某壳网竟然也聊起了“micro RNA”,这一只在生物学界才被熟知的名词,已经“热”到日常生活了么?老猫同志说的没错,虽然科学家们发现了很多microRNA与某些重要的生理、生化进程或疾病直接相关,但是大部分的应用目前还停留在实验室或者初级临床的层级里。毕竟microRNA的研究至今只有20多年的历史,人类对于它的了解还不成熟。就连这个科班出身的,上学时也只知道mRNA,tRNA和rRNA,做了科研后才知道,原来还有MiRNA、SiRNA、LncRNA、PiwiRNA、CeRNA……不过,如果你是医院的小伙伴们,如果还没有搞懂MicroRNA,那你可就真的要OUT了。酸菜今天兴致来了,也来为MicroRNA科普一把!绝壁比某网接地气的,有木有?MicroRNA (miRNA) 是一类由内源基因编码的长度约为22 nt的非编码单链RNA 分子,它们在动植物中参与转录后基因表达调控。过于教条,过于高大上?往简单地讲,Micro RNA就是一条不会翻译蛋白的小RNA。为什么是22nt,而不是22bp?(nt是核苷酸,bp是碱基对)Micro RNA是用nt作为单位的,说明了miRNA是单链的。我们在文献里miRNA名字有没有觉得很奇怪?有has、3p、5p,有的后面还带*号,还有的有a有b,有的a、b后面跟个-1、-2……完全看不懂有没有?我来给大家解读一下,如下图。miRNA就是一条不会翻译蛋白的小RNA,那么miRNA对人体到底有什么作用?给你举个例子,你感受一下。普通的mRNA就好比是一条高速公路,路上会有很多会排出尾气的汽车(核糖体,它们在mRNA上边走边翻译蛋白),一条高速路上会有很多辆车(多聚核糖体Polysome),车越多、开得越快,尾气就越大(蛋白表达量就越高),这个时候,在路快到尽头的地方(mRNA的3’UTR上)就出现了一个交警(MiRNA聚合一些蛋白的RISC,RNA-Induced SilencingComplex,RNA诱导沉默复合体),他稳稳地站在路的最后(通过RISC中的MiRNA与3’UTR互补,结合到mRNA的3’UTR上),整个车队就停下来了,尾气也没了(蛋白表达降低)。好了,现在也明白为什么过表达miRNA之后下游基因的mRNA变化不大,但蛋白会有变化了吧?因为警察是不会拆路的……发布于 2017-12-12 13:00核糖核酸(RNA)基因科研​赞同 165​​10 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录解螺旋关于医学科研的独到

医学前沿:非编码RNA—microRNA - 知乎

医学前沿:非编码RNA—microRNA - 知乎首发于基因研究发展史切换模式写文章登录/注册医学前沿:非编码RNA—microRNA启领生物在2019年国家自然科学基金资助项目中,以非编码RNA为研究主线的miRNA/IncRNA/CircRNA/CeRNA占中标总数的5成以上!▲RNA项目中标数近几年,涉及到RNA的项目数连年呈上升趋势,丝毫没有“减热”。预计2020年,中标项目在保持现有的基础上依旧有上升的可能。今天我们主要讲的是是非编码RNA中“老而弥坚”的热点—microRNA(miRNA)。注:2019年,涉及到miRNA研究的中标项目至少为210项,热度已维持多年,位居国自然申请热点榜的“榜首”。随着研究的不断深入,单个miRNA已很难满足评审组,其渐渐沦为工具分子或需多个miRNA“抱团取暖”才可以。▲历年自然科学基金-miRNA中标项目数下面小编将带大家深度“扒一扒”miRNA,从概念、生成过程、生物学功能、在生物医学领域的应用和miRNA实验设计思路进行深入介绍。希望可以为大家的项目申请和实验设计提供新的思路。在遗传学中,微RNA(microRNAs,miRNA)是一类进化上保守的非编码小分子RNA,长度一般在21-23个核苷酸之间,具有在翻译水平调控基因表达的功能。在脊椎动物基因组中有多达1000个不同的miRNA,调控至少30%以上的基因表达。miRNA广泛存在于多种真核生物中,其生物学特征主要表现为:①高度保守性:miRNA保守性具有重要的生物学意义,提示在不同生物发育过程中,miRNAs具有相同的调控机制。②时序表达特异性性:在不同组织、不同发育阶段,miRNA的表达水平有显著差异,miRNA表达是动态调控的。③组织表达特异性:一些miRNA表达具有细胞和组织特异性。▲miRNA的形成在细胞核内,基因组DNA转录生成较长的RNA分子(长度达1000nt),其被双链RNA特异性的核糖核酸酶Drosha切割成长度大约70-100碱基的具有发夹结构的RNA分子(primary transcripts,pri-miRNA)。这些具有发夹结构的RNA分子经核输出蛋白exportin5机制转运到细胞质,然后被第二个双链RNA特异的核糖核酸酶Dicer切割,形成19-23nt大小的成熟的miRNAs。▲miRNA形成和行使功能示意图成熟的单链miRNAs与类似RNA诱导沉默复合物(RISC)结合,并参与RNA干扰反应(RNAi)。在动物中,结合在复合物上的miRNA以一种目前尚未完全清楚的机制结合到基序基本互补的mRNA上,但这种结合并不像RNAI反应那样参与mRNA降解,而是阻止所结合的mRNA的翻译,导致相应基因表达水平的降低。▲miRNA功能示意图▲蛋白功能受到多个miRNA分子的调控最新的研究表明,miRNA除了经典的下调基因的表达之外,还有7种非经典调控分子机制。①Pri-miRNA可被翻译为多肽:pri-miRNA进入胞质中被核糖体识别为mRNA,翻译为多肽行使生理功能。②miRNA与功能蛋白结合:miRNA与AGO蛋白复合物组成RISC,靶向降解mRNA外,还可与其他功能性蛋白结合,发挥非经典调控途径。③直接激活TLR受体蛋白。④提高蛋白表达水平。⑤miRNA靶向调控线粒体相关基因mRNA:该类miRNA一般都具有同时调控多个线粒体相关基因的mRNA;⑥直接激活基因转录过程:如miR-589复合物可结合cyclooxygenase-2 (COX2)启动子区序列,启动该基因的转录过程。⑦靶向负调控其他非编码RNA的前体RNA:在细胞核内,miRNA可靶向降解了pri-miRNA。▲miRNA经典作用机制▲miRNA非经典调控机制汇总(图片源自《cell》)miRNA的功能涉及到各种生理病理过程,包括:发育过程调节、抵抗病毒入侵、动物免疫功能调节、各器官/系统疾病以及肿瘤。▲miRNA对神经元发育的影响▲miRNA与肿瘤▲miRNA对血小板功能的影响1、寻找研究对象:首先精确的了解课题是针对哪种疾病中的哪个通路、哪个蛋白,再寻找感兴趣的miRNA或蛋白作为研究对象,如在样本中异常升高或降低的指标。2、确认研究对象:广泛检索资料,经多种方法分析高通量数据,确定目的miRNA或蛋白在目的样本中升高或降低。该步骤是后续实验的基础,必须重视。3、寻找靶关系:应用在线的预测平台或生物信息学技术寻找目的miRNA可能与哪些蛋白存在相互关系,或者目的蛋白可能是哪些miRNA的靶蛋白。感兴趣的可参考该网址提供的方法:http://weixin.shengxin.ren/web/wei_xin/examples/Html/290000/296256.html;https://blog.csdn.net/herokoking/article/details/77863126。4、确认靶关系:确认在体内这种靶关系确实存在,miRNA会降低靶蛋白的表达量。5、确认生物功能:证明miRNA-靶蛋白这种相互作用会导致生物学功能改变。功能实验的量、涉及范围、技术手段及重要程度是文章意义和影响因子的决定因素。▲miRNA实验设计思路https://mp.weixin.qq.com/s/hiHHrBvS0P0rcPvF-_PlKw发布于 2020-06-30 12:33非编码RNAmiRNA核糖核酸(RNA)​赞同 73​​4 条评论​分享​喜欢​收藏​申请转载​文章被以下专栏收录基因研究发展史基因科技什么时候可以改变

微RNA_百度百科

_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心收藏查看我的收藏0有用+10微RNA播报讨论上传视频真核生物中的RNA分子微RNA(microRNAs;miRNA,又译小分子RNA)是真核生物中广泛存在的一种长约21到23个核苷酸的RNA分子,可调节其他基因的表达。miRNA来自一些从DNA转录而来,但无法进一步转译成蛋白质的RNA(属于非编码RNA)。miRNA通过与靶信使核糖核酸(mRNA)特异结合,从而抑制转录后基因表达, 在调控基因表达、细胞周期、生物体发育时序等方面起重要作用。在动物中,一个微RNA通常可以调控数十个基因。这些RNA是从初级转录本(primary transcript),也就是pri-miRNA,转变成为称为pre-miRNA的茎环结构,最后成为具有功能的miRNA。中文名微RNA外文名microRNAs别    名又译小分子RNA解    释内生的长度约20-24个核苷酸小RNA所属分类真核生物目录1简介2微RNA的作用简介播报编辑微RNAMicroRNA(miRNA)是一类内生的、长度约20-24个核苷酸的小RNA,其在细胞内具有多种重要的调节作用。每个miRNA可以有多个靶基因,而几个miRNAs也可以调节同一个基因。这种复杂的调节网络既可以通过一个miRNA来调控多个基因的表达,也可以通过几个miRNAs的组合来精细调控某个基因的表达。据推测,miRNA调节着人类三分之一的基因。MicroRNA存在多种形式,最原始的是pri-miRNA,长度大约为300~1000个碱基;pri-miRNA经过一次加工后,成为pre-miRNA即microRNA前体,长度大约为70~90个碱基;pre-miRNA再经过Dicer酶酶切后,成为长约20~24nt的成熟miRNA。实际研究中,pre-miRNA应用最早,也最广泛,很多商业化的MicroRNA库都是pre-miRNA形式的。近几年来,研究发现microRNA的双臂对成熟miRNA的形成有着十分重要的作用,所以天然的pri-miRNA形式越来越多地被研究者采用。 [1]miRNA的二级结构为A型双螺旋。1989年,Victor发现线虫 ( C. elegans) 中有个基因 lin-4 抑制另一个基因 lin-14. 他们认为 lin-4 应该也表达一种调控蛋白质,因为基因转录成RNA并翻译成蛋白质是当时认为的公理。1993年,Victor的学生 Rosalind Lee 和 Phonda Feinbaum 克隆出了 lin-4,却发现这个基因非常小,而且这个基因的产物不是蛋白质,而是一个长度只有22个核苷酸的RNA。它是由单链的RNA分子产生,这个分子的一端折回来形成不完全的互补配对,称"发卡结构".与小分子siRNAs相比,miRNA在分子特性等方面是相似的,但也存在不少的差异。siRNA是双链RNA,3‘端有2个非配对碱基,通常为UU; miRNA是单链RNA。 siRNAs是由dsDNA在Dicer酶切割下产生,而成熟miRNAs的产生要复杂一些,首先pri-miRNA在核内由一种称为Drosha酶处理后成为大约70nt的带有茎环结构的Precursor miRNAs (pre-miRNAs), 这些pre-miRNAs再在Exportin-5帮助下转运到细胞核外之后再由胞质Dicer酶进行处理,酶切后成为成熟的miRNAs。生命的一些重要活动如幼虫的生长发育、细胞的发生和分化、神经系统的分化等都被一些非编码蛋白的小RNA的调控, 而除miRNA、siRNA以外的小RNA我们知之甚少。微RNA的作用播报编辑人类基因组计划结束后,人们发现编码蛋白质的基因只占总基因组的约2%。而占人类基因组95%的非编码序列竟是产生大量非编码RNA的源泉,这些非编码RNA主要充当调控者的角色,在细胞分化凋亡、生物发育、疾病发生等方面均起重要作用。其实,RNA比DNA更为古老,它组成了地球上最早的生命。生命起源初期,没有由核酸编码的蛋白,生命体由RNA组成,这被称为“RNA世界”。RNA既携带遗传信息,又承担催化分子的作用,参与自身复制。虽然后来出现了DNA,但RNA依旧承担着很多调控功能。在线虫中发现的一种微小RNA(miRNA)——let-7 RNA,就是RNA调控生物发育的一个突出代表。它在线虫幼虫的3/4期出现,它一出现便会抑制Lin-41等蛋白的表达,同时解除对Lin-29蛋白表达的抑制,使线虫进入成虫期。一旦它的一个碱基发生突变,就可使线虫永远停留在幼虫期,而无法成熟。另一个代表是费厄和麦洛发现的双链RNA能引发RNA干扰——他们两人因此获得2006年诺贝尔医学奖。小分子调控RNA已成为分子生物学中的热点和前沿。因为,小干扰RNA在细胞质中调控蛋白质的生物合成,在细胞核内引发DNA的甲基化,进而引发表观遗传学的一系列变化,可谓“重权在握”。除此以外,一些微RNA还可以激活心肌细胞的再生能力。在我们出生后不久,心脏就丧失了再生能力。所以,当心脏病发作时,心肌细胞死亡,受损心肌并未长出新生的心肌细胞,而是被瘢痕组织替代。如今,意大利德里亚斯特国际遗传工程和生物技术中心的莫罗·贾克(Mauro Giacca)及其同事们,已经鉴定出了能够激活成年人心肌细胞分裂增殖的分子。之后,他们将在真正的生命体上利用这些分子,诱导心肌细胞分裂增殖。此项工作燃起了我们让受损心脏重获新生的希望。为了弄清楚哪些微RNA参与心肌细胞的分裂,贾克的团队在人工培养的啮齿动物心肌细胞中测试了875个人类微RNA。他们发现有204个微RNA可以再度激活细胞增殖,其中两个能够影响近2000个基因。贾克认为,只要微RNA不会引起其他细胞的增殖,比如造成肿瘤之类的,对心脏病突发人群来说,这一方法将会成为一项很有价值的介入治疗法。 [2]但RNA调控功能不仅限于小分子RNA,大型RNA调控本领也不示弱。女性细胞中有一种长达一万核苷酸的XistRNA,最终能使女性一条染色体被关闭,使男女性X染色体编码基因的表达量相同。调控RNA拥有庞大的家族,至今已知的就有小阅读框RNA、印记RNA、微卫星RNA、反向转录RNA、反转座子RNA等等,还有更多种类有待科学家发现。自2005年以来,我国已有五个与RNA有关的国家重大项目。我国科学家在肿瘤、心血管病等领域,也已取得一些好的成绩。世界各国已有多种核酸技术进入生物产业,过百种的各类核酸药物进入临床试验。 [3]从生物学机理上来说,miRNA有成为肿瘤标志物的优势,它是肿瘤细胞主动分泌的,随着肿瘤细胞的生成、凋零,miRNA的表达量一直在变化,所以每种miRNA的表达量代表了在某一刻人类体内健康或者疾病的信息。 [4]MiRXES在人体这2000多种miRNA中,他们找出了与胃癌高度相关的12种miRNA,当人体中出现胃癌细胞时,这12种miRNA在血液中的浓度会出现异常。 [5]新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

microRNAs in action: biogenesis, function and regulation | Nature Reviews Genetics

microRNAs in action: biogenesis, function and regulation | Nature Reviews Genetics

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain

the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in

Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles

and JavaScript.

Advertisement

View all journals

Search

Log in

Explore content

About the journal

Publish with us

Subscribe

Sign up for alerts

RSS feed

nature

nature reviews genetics

review articles

article

Review Article

Published: 28 June 2023

microRNAs in action: biogenesis, function and regulation

Renfu Shang1, Seungjae Lee 

ORCID: orcid.org/0000-0001-5626-96561, Gayan Senavirathne1 & …Eric C. Lai 

ORCID: orcid.org/0000-0002-8432-58511 Show authors

Nature Reviews Genetics

volume 24, pages 816–833 (2023)Cite this article

11k Accesses

41 Citations

35 Altmetric

Metrics details

Subjects

RNAiStructural biology

AbstractEver since microRNAs (miRNAs) were first recognized as an extensive gene family >20 years ago, a broad community of researchers was drawn to investigate the universe of small regulatory RNAs. Although core features of miRNA biogenesis and function were revealed early on, recent years continue to uncover fundamental information on the structural and molecular dynamics of core miRNA machinery, how miRNA substrates and targets are selected from the transcriptome, new avenues for multilevel regulation of miRNA biogenesis and mechanisms for miRNA turnover. Many of these latest insights were enabled by recent technological advances, including massively parallel assays, cryogenic electron microscopy, single-molecule imaging and CRISPR–Cas9 screening. Here, we summarize the current understanding of miRNA biogenesis, function and regulation, and outline challenges to address in the future.

Access through your institution

Buy or subscribe

This is a preview of subscription content, access via your institution

Access options

Access through your institution

Access through your institution

Change institution

Buy or subscribe

Access Nature and 54 other Nature Portfolio journalsGet Nature+, our best-value online-access subscription24,99 € / 30 dayscancel any timeLearn moreSubscribe to this journalReceive 12 print issues and online access176,64 € per yearonly 14,72 € per issueLearn moreRent or buy this articlePrices vary by article typefrom$1.95to$39.95Learn morePrices may be subject to local taxes which are calculated during checkout

Additional access options:

Log in

Learn about institutional subscriptions

Read our FAQs

Contact customer support

Fig. 1: Canonical and non-canonical miRNA biogenesis pathways.Fig. 2: Structural and sequence features of miRNA substrates and targets.Fig. 3: Cryo-EM and single-molecule studies of Microprocessor and Dicer complexes.Fig. 4: Strategies for the regulation of miRNA biogenesis.Fig. 5: Regulation of miRNA turnover.

Similar content being viewed by others

Decoding chromatin states by proteomic profiling of nucleosome readers

Article

Open access

06 March 2024

Saulius Lukauskas, Andrey Tvardovskiy, … Till Bartke

Population-level comparisons of gene regulatory networks modeled on high-throughput single-cell transcriptomics data

Article

Open access

04 March 2024

Daniel Osorio, Anna Capasso, … Marieke L. Kuijjer

Regulatory activity is the default DNA state in eukaryotes

Article

06 March 2024

Ishika Luthra, Cassandra Jensen, … Carl G. de Boer

ReferencesLee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843–854 (1993).Article 

CAS 

PubMed 

Google Scholar 

Wightman, B., Ha, I. & Ruvkun, G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75, 855–862 (1993).Article 

CAS 

PubMed 

Google Scholar 

Leviten, M. W., Lai, E. C. & Posakony, J. W. The Drosophila gene Bearded encodes a novel small protein and shares 3′ UTR sequence motifs with multiple Enhancer of split complex genes. Development 124, 4039–4051 (1997).Article 

CAS 

PubMed 

Google Scholar 

Lai, E. C. & Posakony, J. W. The Bearded box, a novel 3′ UTR sequence motif, mediates negative post-transcriptional regulation of Bearded and Enhancer of split complex gene expression. Development 124, 4847–4856 (1997).Article 

CAS 

PubMed 

Google Scholar 

Lai, E. C., Burks, C. & Posakony, J. W. The K box, a conserved 3′ UTR sequence motif, negatively regulates accumulation of Enhancer of split complex transcripts. Development 125, 4077–4088 (1998).Article 

CAS 

PubMed 

Google Scholar 

Lai, E. C. microRNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat. Genet. 30, 363–364 (2002).Article 

CAS 

PubMed 

Google Scholar 

Lau, N., Lim, L., Weinstein, E. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858–862 (2001).Article 

CAS 

PubMed 

Google Scholar 

Lee, R. C. & Ambros, V. An extensive class of small RNAs in Caenorhabditis elegans. Science 294, 862–864 (2001).Article 

CAS 

PubMed 

Google Scholar 

Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853–858 (2001).Article 

CAS 

PubMed 

Google Scholar 

Bartel, D. P. Metazoan microRNAs. Cell 173, 20–51 (2018).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Czech, B. & Hannon, G. J. Small RNA sorting: matchmaking for Argonautes. Nat. Rev. Genet. 12, 19–31 (2010).Article 

PubMed Central 

PubMed 

Google Scholar 

Yang, J. S. & Lai, E. C. Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol. Cell 43, 892–903 (2011).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Maurin, T., Cazalla, D., Yang, J. S., Bortolamiol-Becet, D. & Lai, E. C. RNase III-independent microRNA biogenesis in mammalian cells. RNA 18, 2166–2173 (2012).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Shang, R. et al. Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects. Nat. Commun. 6, 8430 (2015).Article 

CAS 

PubMed 

Google Scholar 

Lai, E. C., Tam, B. & Rubin, G. M. Pervasive regulation of Drosophila Notch target genes by GY-box-, Brd-box-, and K-box-class microRNAs. Genes Dev. 19, 1067–1080 (2005).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120, 15–20 (2005).Article 

CAS 

PubMed 

Google Scholar 

Brennecke, J., Stark, A., Russell, R. B. & Cohen, S. M. Principles of microRNA–target recognition. PLoS Biol. 3, e85 (2005).Article 

PubMed Central 

PubMed 

Google Scholar 

Wang, Y., Sheng, G., Juranek, S., Tuschl, T. & Patel, D. J. Structure of the guide-strand-containing Argonaute silencing complex. Nature 456, 209–213 (2008).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Schirle, N. T. & MacRae, I. J. The crystal structure of human Argonaute2. Science 336, 1037–1040 (2012).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Elkayam, E. et al. The structure of human Argonaute-2 in complex with miR-20a. Cell 150, 100–110 (2012).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437–1441 (2004).Article 

CAS 

PubMed 

Google Scholar 

Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185–197 (2004).Article 

CAS 

PubMed 

Google Scholar 

Park, M. S. et al. Human Argonaute3 has slicer activity. Nucleic acids Res. 45, 11867–11877 (2017).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Park, M. S., Sim, G., Kehling, A. C. & Nakanishi, K. Human Argonaute2 and Argonaute3 are catalytically activated by different lengths of guide RNA. Proc. Natl Acad. Sci. USA 117, 28576–28578 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Nguyen, H. M., Nguyen, T. D., Nguyen, T. L. & Nguyen, T. A. Orientation of human microprocessor on primary microRNAs. Biochemistry 58, 189–198 (2019).Article 

CAS 

PubMed 

Google Scholar 

Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha–DGCR8 complex. Cell 125, 887–901 (2006).Article 

CAS 

PubMed 

Google Scholar 

Zeng, Y. & Cullen, B. R. Efficient processing of primary microRNA hairpins by Drosha requires flanking non-structured RNA sequences. J. Biol. Chem. 280, 27595–27603 (2005).Article 

CAS 

PubMed 

Google Scholar 

Zeng, Y., Yi, R. & Cullen, B. R. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J. 24, 138–148 (2005).Article 

CAS 

PubMed 

Google Scholar 

Ma, H., Wu, Y., Choi, J. G. & Wu, H. Lower and upper stem-single-stranded RNA junctions together determine the Drosha cleavage site. Proc. Natl Acad. Sci. USA 110, 20687–20692 (2013).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Auyeung, V. C., Ulitsky, I., McGeary, S. E. & Bartel, D. P. Beyond secondary structure: primary-sequence determinants license pri-miRNA hairpins for processing. Cell 152, 844–858 (2013). This study is the first to utilize massively parallel substrate assays to reveal motifs involved in pri-miRNA processing.Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Fang, W. & Bartel, D. P. The menu of features that define primary microRNAs and enable de novo design of microRNA genes. Mol. Cell 60, 131–145 (2015).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Partin, A. C. et al. Heme enables proper positioning of Drosha and DGCR8 on primary microRNAs. Nat. Commun. 8, 1737 (2017).Article 

PubMed Central 

PubMed 

Google Scholar 

Nguyen, T. A., Park, J., Dang, T. L., Choi, Y. G. & Kim, V. N. Microprocessor depends on hemin to recognize the apical loop of primary microRNA. Nucleic acids Res. 46, 5726–5736 (2018).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Kim, K., Nguyen, T. D., Li, S. & Nguyen, T. A. SRSF3 recruits DROSHA to the basal junction of primary microRNAs. RNA 24, 892–898 (2018).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Fernandez, N. et al. Genetic variation and RNA structure regulate microRNA biogenesis. Nat. Commun. 8, 15114 (2017).Article 

PubMed Central 

PubMed 

Google Scholar 

Li, S., Nguyen, T. D., Nguyen, T. L. & Nguyen, T. A. Mismatched and wobble base pairs govern primary microRNA processing by human microprocessor. Nat. Commun. 11, 1926 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Li, S., Le, T. N., Nguyen, T. D., Trinh, T. A. & Nguyen, T. A. Bulges control pri-miRNA processing in a position and strand-dependent manner. RNA Biol. 18, 1716–1726 (2021).Article 

CAS 

PubMed 

Google Scholar 

Lee, Y. Y., Kim, H. & Kim, V. N. Sequence determinant of small RNA production by DICER. Nature 615, 323–330 (2023).Article 

CAS 

PubMed 

Google Scholar 

Rice, G. M., Shivashankar, V., Ma, E. J., Baryza, J. L. & Nutiu, R. Functional atlas of primary miRNA maturation by the microprocessor. Mol. Cell 80, 892–902.e4 (2020).Article 

CAS 

PubMed 

Google Scholar 

Kim, K. et al. A quantitative map of human primary microRNA processing sites. Mol. Cell 81, 3422–3439.e11 (2021).Article 

CAS 

PubMed 

Google Scholar 

Kang, W. et al. MapToCleave: high-throughput profiling of microRNA biogenesis in living cells. Cell Rep. 37, 110015 (2021).Article 

CAS 

PubMed 

Google Scholar 

Chiang, H. R. et al. Mammalian microRNAs: experimental evaluation of novel and previously annotated genes. Genes Dev. 24, 992–1009 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Consortium, R. RNAcentral 2021: secondary structure integration, improved sequence search and new member databases. Nucleic acids Res. 49, D212–D220 (2021).Article 

Google Scholar 

Fromm, B., Zhong, X., Tarbier, M., Friedlander, M. R. & Hackenberg, M. The limits of human microRNA annotation have been met. RNA https://doi.org/10.1261/rna.079098.122 (2022).Article 

PubMed Central 

PubMed 

Google Scholar 

Nguyen, T. L., Nguyen, T. D., Bao, S., Li, S. & Nguyen, T. A. The internal loops in the lower stem of primary microRNA transcripts facilitate single cleavage of human microprocessor. Nucleic acids Res. 48, 2579–2593 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Luo, Q. J. et al. RNA structure probing reveals the structural basis of Dicer binding and cleavage. Nat. Commun. 12, 3397 (2021).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57–68 (2004).Article 

CAS 

PubMed 

Google Scholar 

Macrae, I. J. et al. Structural basis for double-stranded RNA processing by Dicer. Science 311, 195–198 (2006).Article 

CAS 

PubMed 

Google Scholar 

MacRae, I. J., Zhou, K. & Doudna, J. A. Structural determinants of RNA recognition and cleavage by Dicer. Nat. Struct. Mol. Biol. 14, 934–940 (2007).Article 

CAS 

PubMed 

Google Scholar 

Vermeulen, A. et al. The contributions of dsRNA structure to Dicer specificity and efficiency. RNA 11, 674–682 (2005).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Zhang, H., Kolb, F. A., Brondani, V., Billy, E. & Filipowicz, W. Human Dicer preferentially cleaves dsRNAs at their termini without a requirement for ATP. EMBO J. 21, 5875–5885 (2002).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Park, J. E. et al. Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475, 201–205 (2011).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Gu, S. et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo. Cell 151, 900–911 (2012).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Nguyen, T. D., Trinh, T. A., Bao, S. & Nguyen, T. A. Secondary structure RNA elements control the cleavage activity of DICER. Nat. Commun. 13, 2138 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Frank, F., Sonenberg, N. & Nagar, B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465, 818–822 (2010).Article 

CAS 

PubMed 

Google Scholar 

Boland, A., Tritschler, F., Heimstadt, S., Izaurralde, E. & Weichenrieder, O. Crystal structure and ligand binding of the MID domain of a eukaryotic Argonaute protein. EMBO Rep. 11, 522–527 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Schirle, N. T., Sheu-Gruttadauria, J., Chandradoss, S. D., Joo, C. & MacRae, I. J. Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. eLife https://doi.org/10.7554/eLife.07646 (2015).Article 

PubMed Central 

PubMed 

Google Scholar 

Shin, C. et al. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell 38, 789–802 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Chi, S. W., Hannon, G. J. & Darnell, R. B. An alternative mode of microRNA target recognition. Nat. Struct. Mol. Biol. 19, 321–327 (2012).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Lal, A. et al. miR-24 Inhibits cell proliferation by targeting E2F2, MYC, and other cell-cycle genes via binding to “seedless” 3′UTR microRNA recognition elements. Mol. Cell 35, 610–625 (2009).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Loeb, G. B. et al. Transcriptome-wide miR-155 binding map reveals widespread noncanonical microRNA targeting. Mol. Cell 48, 760–770 (2012).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Hafner, M. et al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell 141, 129–141 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Becker, W. R. et al. High-throughput analysis reveals rules for target RNA binding and cleavage by AGO2. Mol. Cell 75, 741–755.e11 (2019).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

McGeary, S. E. et al. The biochemical basis of microRNA targeting efficacy. Science https://doi.org/10.1126/science.aav1741 (2019). This paper reveals broad features of miRNA–target interactions using RBNS.Article 

PubMed Central 

PubMed 

Google Scholar 

McGeary, S. E., Bisaria, N., Pham, T. M., Wang, P. Y. & Bartel, D. P. microRNA 3′-compensatory pairing occurs through two binding modes, with affinity shaped by nucleotide identity and position. eLife https://doi.org/10.7554/eLife.69803 (2022).Article 

PubMed Central 

PubMed 

Google Scholar 

Grimson, A. et al. microRNA targeting specificity in mammals: determinants beyond seed pairing. Mol. Cell 27, 91–105 (2007).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Gu, S., Jin, L., Zhang, F., Sarnow, P. & Kay, M. A. Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat. Struct. Mol. Biol. 16, 144–150 (2009).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Schnall-Levin, M. et al. Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res. 21, 1395–1403 (2011).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Zhang, K. et al. A novel class of microRNA-recognition elements that function only within open reading frames. Nat. Struct. Mol. Biol. 25, 1019–1027 (2018).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Yu, S. & Kim, V. N. A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat. Rev. Mol. Cell Biol. https://doi.org/10.1038/s41580-020-0246-8 (2020).Article 

PubMed 

Google Scholar 

Yang, A. et al. 3′ uridylation confers miRNAs with non-canonical target repertoires. Mol. Cell 75, 511–522.e4 (2019).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Sheu-Gruttadauria, J., Xiao, Y., Gebert, L. F. & MacRae, I. J. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J. 38, e101153 (2019).Article 

PubMed Central 

PubMed 

Google Scholar 

Sim, G. et al. Manganese-dependent microRNA trimming by 3′ → 5′ exonucleases generates 14-nucleotide or shorter tiny RNAs. Proc. Natl Acad. Sci. USA 119, e2214335119 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Kim, H. H. et al. HuR recruits let-7/RISC to repress c-Myc expression. Genes Dev. 23, 1743–1748 (2009).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Sternburg, E. L., Estep, J. A., Nguyen, D. K., Li, Y. & Karginov, F. V. Antagonistic and cooperative AGO2–PUM interactions in regulating mRNAs. Sci. Rep. 8, 15316 (2018).Article 

PubMed Central 

PubMed 

Google Scholar 

Kedde, M. et al. RNA-binding protein Dnd1 inhibits microRNA access to target mRNA. Cell 131, 1273–1286 (2007).Article 

CAS 

PubMed 

Google Scholar 

Kim, S. et al. The regulatory impact of RNA-binding proteins on microRNA targeting. Nat. Commun. 12, 5057 (2021).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Wang, Y. et al. Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456, 921–926 (2008).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Wang, Y. et al. Nucleation, propagation and cleavage of target RNAs in Ago silencing complexes. Nature 461, 754–761 (2009).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434–1437 (2004).Article 

CAS 

PubMed 

Google Scholar 

Liu, Z. et al. Cryo-EM structure of human dicer and its complexes with a pre-miRNA substrate. Cell 173, 1191–1203.e12 (2018).Article 

CAS 

PubMed 

Google Scholar 

Nguyen, T. A. et al. Functional anatomy of the human microprocessor. Cell 161, 1374–1387 (2015).Article 

CAS 

PubMed 

Google Scholar 

Kwon, S. C. et al. Structure of human DROSHA. Cell 164, 81–90 (2016).Article 

CAS 

PubMed 

Google Scholar 

Barr, I. et al. DiGeorge critical region 8 (DGCR8) is a double-cysteine-ligated heme protein. J. Biol. Chem. 286, 16716–16725 (2011).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Quick-Cleveland, J. et al. The DGCR8 RNA-binding heme domain recognizes primary microRNAs by clamping the hairpin. Cell Rep. 7, 1994–2005 (2014).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Jin, W., Wang, J., Liu, C. P., Wang, H. W. & Xu, R. M. Structural basis for pri-miRNA recognition by Drosha. Mol. Cell 78, 423–433.e5 (2020).Article 

CAS 

PubMed 

Google Scholar 

Partin, A. C. et al. Cryo-EM structures of human Drosha and DGCR8 in complex with primary microRNA. Mol. Cell 78, 411–422 e414 (2020). Together with Jin et al. (2020), this work is the first cryo-EM study of Microprocessor structures.Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Shi, Z., Nicholson, R. H., Jaggi, R. & Nicholson, A. W. Characterization of Aquifex aeolicus ribonuclease III and the reactivity epitopes of its pre-ribosomal RNA substrates. Nucleic acids Res. 39, 2756–2768 (2011).Article 

CAS 

PubMed 

Google Scholar 

Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nat. Struct. Mol. Biol. 11, 214–218 (2004).Article 

CAS 

PubMed 

Google Scholar 

Lee, Y. Y., Lee, H., Kim, H., Kim, V. N. & Roh, S. H. Structure of the human DICER–pre-miRNA complex in a dicing state. Nature 615, 331–338 (2023).Article 

CAS 

PubMed 

Google Scholar 

Zapletal, D. et al. Structural and functional basis of mammalian microRNA biogenesis by Dicer. Mol. Cell 82, 4064–4079.e13 (2022). Together with Lee et al. (Nature, 2023), this work reports new cryo-EM structures for active mammalian Dicer complex.Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Jouravleva, K. et al. Structural basis of microRNA biogenesis by Dicer-1 and its partner protein Loqs-PB. Mol. Cell 82, 4049–4063.e6 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Wei, X. et al. Structural basis of microRNA processing by Dicer-like 1. Nat. Plants 7, 1389–1396 (2021).Article 

CAS 

PubMed 

Google Scholar 

Fareh, M. et al. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat. Commun. 7, 13694 (2016).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Yamaguchi, S. et al. Structure of the Dicer-2–R2D2 heterodimer bound to a small RNA duplex. Nature 607, 393–398 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Su, S. et al. Structural insights into dsRNA processing by Drosophila Dicer-2–Loqs-PD. Nature 607, 399–406 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Wang, Q. et al. Mechanism of siRNA production by a plant Dicer–RNA complex in dicing-competent conformation. Science 374, 1152–1157 (2021).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Herbert, K. M. et al. A heterotrimer model of the complete Microprocessor complex revealed by single-molecule subunit counting. RNA 22, 175–183 (2016).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Naganuma, M., Tadakuma, H. & Tomari, Y. Single-molecule analysis of processive double-stranded RNA cleavage by Drosophila Dicer-2. Nat. Commun. 12, 4268 (2021).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Iwasaki, S. et al. Defining fundamental steps in the assembly of the Drosophila RNAi enzyme complex. Nature 521, 533–536 (2015).Article 

CAS 

PubMed 

Google Scholar 

Tsuboyama, K., Tadakuma, H. & Tomari, Y. Conformational activation of argonaute by distinct yet coordinated actions of the Hsp70 and Hsp90 chaperone systems. Mol. Cell 70, 722–729.e4 (2018).Article 

CAS 

PubMed 

Google Scholar 

Willkomm, S. et al. Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2. Nat. Commun. 13, 3825 (2022). This study uses single-molecule fluorescence to dissect internal motions within human Ago2 during transitions from guide RNA binding to target capture.Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Salomon, W. E., Jolly, S. M., Moore, M. J., Zamore, P. D. & Serebrov, V. Single-molecule imaging reveals that argonaute reshapes the binding properties of its nucleic acid guides. Cell 162, 84–95 (2015).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Yao, C., Sasaki, H. M., Ueda, T., Tomari, Y. & Tadakuma, H. Single-molecule analysis of the target cleavage reaction by the Drosophila RNAi enzyme complex. Mol. Cell 59, 125–132 (2015).Article 

CAS 

PubMed 

Google Scholar 

Chandradoss, S. D., Schirle, N. T., Szczepaniak, M., MacRae, I. J. & Joo, C. A dynamic search process underlies microRNA targeting. Cell 162, 96–107 (2015). This study uses the distance sensing capability of smFRET to visualize strategies of target interrogation by RISC.Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Klum, S. M., Chandradoss, S. D., Schirle, N. T., Joo, C. & MacRae, I. J. Helix-7 in argonaute2 shapes the microRNA seed region for rapid target recognition. EMBO J. 37, 75–88 (2018).Article 

CAS 

PubMed 

Google Scholar 

Cui, T. J. et al. Argonaute bypasses cellular obstacles without hindrance during target search. Nat. Commun. 10, 4390 (2019).Article 

PubMed Central 

PubMed 

Google Scholar 

Ruijtenberg, S. et al. mRNA structural dynamics shape Argonaute–target interactions. Nat. Struct. Mol. Biol. 27, 790–801 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Cialek, C. A. et al. Imaging translational control by Argonaute with single-molecule resolution in live cells. Nat. Commun. 13, 3345 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Kobayashi, H. & Singer, R. H. Single-molecule imaging of microRNA-mediated gene silencing in cells. Nat. Commun. 13, 1435 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Sheu-Gruttadauria, J. & MacRae, I. J. Structural foundations of RNA silencing by Argonaute. J. Mol. Biol. 429, 2619–2639 (2017).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Nakanishi, K. Anatomy of four human Argonaute proteins. Nucleic acids Res. 50, 6618–6638 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Sheu-Gruttadauria, J. et al. Structural basis for target-directed microRNA degradation. Mol. Cell https://doi.org/10.1016/j.molcel.2019.06.019 (2019).Article 

PubMed Central 

PubMed 

Google Scholar 

Newman, M. A., Thomson, J. M. & Hammond, S. M. Lin-28 interaction with the Let-7 precursor loop mediates regulated microRNA processing. RNA 14, 1539–1549 (2008).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Heo, I. et al. Lin28 mediates the terminal uridylation of let-7 precursor microRNA. Mol. Cell 32, 276–284 (2008).Article 

CAS 

PubMed 

Google Scholar 

Viswanathan, S. R., Daley, G. Q. & Gregory, R. I. Selective blockade of microRNA processing by Lin28. Science 320, 97–100 (2008).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Rybak, A. et al. A feedback loop comprising lin-28 and let-7 controls pre-let-7 maturation during neural stem-cell commitment. Nat. Cell Biol. 10, 987–993 (2008).Article 

CAS 

PubMed 

Google Scholar 

Heo, I. et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell 138, 696–708 (2009).Article 

CAS 

PubMed 

Google Scholar 

Thornton, J. E., Chang, H. M., Piskounova, E. & Gregory, R. I. Lin28-mediated control of let-7 microRNA expression by alternative TUTases Zcchc11 (TUT4) and Zcchc6 (TUT7). RNA 18, 1875–1885 (2012).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Chang, H. M., Triboulet, R., Thornton, J. E. & Gregory, R. I. A role for the Perlman syndrome exonuclease Dis3l2 in the Lin28–let-7 pathway. Nature https://doi.org/10.1038/nature12119 (2013).Article 

PubMed Central 

PubMed 

Google Scholar 

Faehnle, C. R., Walleshauser, J. & Joshua-Tor, L. Mechanism of Dis3l2 substrate recognition in the Lin28–let-7 pathway. Nature 514, 252–256 (2014).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Ustianenko, D. et al. Mammalian DIS3L2 exoribonuclease targets the uridylated precursors of let-7 miRNAs. RNA 19, 1632–1638 (2013).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Heo, I. et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell 151, 521–532 (2012).Article 

CAS 

PubMed 

Google Scholar 

Kim, H. et al. A mechanism for microRNA arm switching regulated by uridylation. Mol. Cell 78, 1224–1236.e5 (2020).Article 

CAS 

PubMed 

Google Scholar 

Michlewski, G. & Caceres, J. F. Post-transcriptional control of miRNA biogenesis. RNA 25, 1–16 (2019).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Treiber, T., Treiber, N. & Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol. 20, 5–20 (2019).Article 

CAS 

PubMed 

Google Scholar 

Michlewski, G., Guil, S., Semple, C. A. & Caceres, J. F. Posttranscriptional regulation of miRNAs harboring conserved terminal loops. Mol. Cell 32, 383–393 (2008).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Nussbacher, J. K. & Yeo, G. W. Systematic discovery of RNA binding proteins that regulate microRNA levels. Mol. Cell 69, 1005–1016.e7 (2018).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Treiber, T. et al. A compendium of RNA-binding proteins that regulate microRNA biogenesis. Mol. Cell 66, 270–284.e13 (2017).Article 

CAS 

PubMed 

Google Scholar 

Tokumaru, S., Suzuki, M., Yamada, H., Nagino, M. & Takahashi, T. let-7 regulates Dicer expression and constitutes a negative feedback loop. Carcinogenesis 29, 2073–2077 (2008).Article 

CAS 

PubMed 

Google Scholar 

Martello, G. et al. A microRNA targeting dicer for metastasis control. Cell 141, 1195–1207 (2010).Article 

CAS 

PubMed 

Google Scholar 

Wang, D. et al. Uncovering the cellular capacity for intensive and specific feedback self-control of the argonautes and microRNA targeting activity. Nucleic acids Res. 48, 4681–4697 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Smibert, P., Yang, J. S., Azzam, G., Liu, J. L. & Lai, E. C. Homeostatic control of Argonaute stability by microRNA availability. Nat. Struct. Mol. Biol. 20, 789–795 (2013).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Kobayashi, H., Shoji, K., Kiyokawa, K., Negishi, L. & Tomari, Y. Iruka eliminates dysfunctional argonaute by selective ubiquitination of its empty state. Mol. Cell 73, 119–129.e5 (2019).Article 

CAS 

PubMed 

Google Scholar 

Martinez, N. J. & Gregory, R. I. Argonaute2 expression is post-transcriptionally coupled to microRNA abundance. RNA 19, 605–612 (2013).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Derrien, B. et al. Degradation of the antiviral component ARGONAUTE1 by the autophagy pathway. Proc. Natl Acad. Sci. USA 109, 15942–15946 (2012).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Han, J. et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 136, 75–84 (2009). This paper identifies the first cross-regulations between miRNA factors, in this case between Microprocessor components Drosha and DGCR8 (see also references 138 and 139).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Kadener, S. et al. Genome-wide identification of targets of the Drosha-Pasha/DGCR8 complex. RNA 15, 537–545 (2009).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Smibert, P. et al. A Drosophila genetic screen yields allelic series of core microRNA biogenesis factors and reveals post-developmental roles for microRNAs. RNA 17, 1997–2010 (2011).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Cui, Y. et al. Global miRNA dosage control of embryonic germ layer specification. Nature 593, 602–606 (2021).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Baskerville, S. & Bartel, D. P. Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11, 241–247 (2005).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Du, P., Wang, L., Sliz, P. & Gregory, R. I. A biogenesis step upstream of microprocessor controls miR-17 approximately 92 expression. Cell 162, 885–899 (2015).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Donayo, A. O. et al. Oncogenic biogenesis of pri-miR-17-92 reveals hierarchy and competition among polycistronic microRNAs. Mol. Cell 75, 340–356 (2019).Article 

CAS 

PubMed 

Google Scholar 

Truscott, M., Islam, A. B. & Frolov, M. V. Novel regulation and functional interaction of polycistronic miRNAs. RNA 22, 129–138 (2016).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Lataniotis, L. et al. CRISPR/Cas9 editing reveals novel mechanisms of clustered microRNA regulation and function. Sci. Rep. 7, 8585 (2017).Article 

PubMed Central 

PubMed 

Google Scholar 

Haar, J. et al. The expression of a viral microRNA is regulated by clustering to allow optimal B cell transformation. Nucleic acids Res. 44, 1326–1341 (2016).Article 

CAS 

PubMed 

Google Scholar 

Vilimova, M. et al. Cis regulation within a cluster of viral microRNAs. Nucleic acids Res. 49, 10018–10033 (2021).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Yang, J. S. & Lai, E. C. Dicer-independent, Ago2-mediated microRNA biogenesis in vertebrates. Cell Cycle 9, 4455–4460 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Jee, D. et al. Dual strategies for Argonaute2-mediated biogenesis of erythroid miRNAs underlie conserved requirements for slicing in mammals. Mol. Cell 69, 265–278.e6 (2018).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Kretov, D. A. et al. Ago2-dependent processing allows miR-451 to evade the global microRNA turnover elicited during erythropoiesis. Mol. Cell 78, 317–328.e6 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Shang, R. et al. Genomic clustering facilitates nuclear processing of suboptimal pri-miRNA loci. Mol. Cell 78, 303–316.e4 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Fang, W. & Bartel, D. P. microRNA clustering assists processing of suboptimal microRNA hairpins through the action of the ERH protein. Mol. Cell 78, 289–302.e6 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Hutter, K. et al. SAFB2 enables the processing of suboptimal stem–loop structures in clustered primary miRNA transcripts. Mol. Cell 78, 876–889 (2020). Together with Shang et al. (2020) and Fang and Bartel (2020), this work reports mechanisms for miRNA cluster assistance for suboptimal miRNA biogenesis.Article 

CAS 

PubMed 

Google Scholar 

Kwon, S. C. et al. ERH facilitates microRNA maturation through the interaction with the N-terminus of DGCR8. Nucleic acids Res. 48, 11097–11112 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Kim, Y. K. & Kim, V. N. Processing of intronic microRNAs. EMBO J. 26, 775–783 (2007).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Ballarino, M. et al. Coupled RNA processing and transcription of intergenic primary microRNAs. Mol. Cell. Biol. 29, 5632–5638 (2009).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Morlando, M. et al. Primary microRNA transcripts are processed co-transcriptionally. Nat. Struct. Mol. Biol. 15, 902–909 (2008).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Liu, H. et al. HP1BP3, a chromatin retention factor for co-transcriptional microRNA processing. Mol. Cell 63, 420–432 (2016).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Church, V. A. et al. Microprocessor recruitment to elongating RNA polymerase II is required for differential expression of microRNAs. Cell Rep. 20, 3123–3134 (2017).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Pawlicki, J. M. & Steitz, J. A. Primary microRNA transcript retention at sites of transcription leads to enhanced microRNA production. J. Cell Biol. 182, 61–76 (2008).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Bernstein, E., Caudy, A., Hammond, S. & Hannon, G. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363–366 (2001).Article 

CAS 

PubMed 

Google Scholar 

Hutvagner, G. et al. A cellular function for the RNA-interference enzyme Dicer in the maturation of the let-7 small temporal RNA. Science 293, 834–838 (2001).Article 

CAS 

PubMed 

Google Scholar 

Flemr, M. et al. A retrotransposon-driven dicer isoform directs endogenous small interfering RNA production in mouse oocytes. Cell 155, 807–816 (2013). This paper reports that an endogenous N-terminally truncated Dicer isoform processes siRNAs in mouse oocytes, an unusual setting for mammalian siRNA biology.Article 

CAS 

PubMed 

Google Scholar 

Watanabe, T. et al. Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453, 539–543 (2008).Article 

CAS 

PubMed 

Google Scholar 

Tam, O. H. et al. Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453, 534–538 (2008).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Suh, N. et al. microRNA function is globally suppressed in mouse oocytes and early embryos. Curr. Biol. 20, 271–277 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Murchison, E. P. et al. Critical roles for Dicer in the female germline. Genes Dev. 21, 682–693 (2007).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Kataruka, S. et al. microRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic acids Res. 48, 8050–8062 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Schuster, S., Miesen, P. & van Rij, R. P. Antiviral RNAi in insects and mammals: parallels and differences. Viruses https://doi.org/10.3390/v11050448 (2019).Article 

PubMed Central 

PubMed 

Google Scholar 

Kennedy, E. M. et al. Production of functional small interfering RNAs by an amino-terminal deletion mutant of human Dicer. Proc. Natl Acad. Sci. USA 112, E6945–E6954 (2015).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Poirier, E. Z. et al. An isoform of Dicer protects mammalian stem cells against multiple RNA viruses. Science 373, 231–236 (2021).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Li, Y., Lu, J., Han, Y., Fan, X. & Ding, S. W. RNA interference functions as an antiviral immunity mechanism in mammals. Science 342, 231–234 (2013).Article 

CAS 

PubMed 

Google Scholar 

Maillard, P. V. et al. Antiviral RNA interference in mammalian cells. Science 342, 235–238 (2013).Article 

CAS 

PubMed 

Google Scholar 

Gantier, M. P. et al. Analysis of microRNA turnover in mammalian cells following Dicer1 ablation. Nucleic acids Res. 39, 5692–5703 (2011).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

van Rooij, E. et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316, 575–579 (2007).Article 

PubMed 

Google Scholar 

Kingston, E. R. & Bartel, D. P. Global analyses of the dynamics of mammalian microRNA metabolism. Genome Res. 29, 1777–1790 (2019).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Gibbings, D. et al. Selective autophagy degrades DICER and AGO2 and regulates miRNA activity. Nat. Cell Biol. 14, 1314–1321 (2012).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Reichholf, B. et al. Time-resolved small RNA sequencing unravels the molecular principles of microRNA homeostasis. Mol. Cell 75, 756–768.e7 (2019).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Krol, J. et al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell 141, 618–631 (2010).Article 

CAS 

PubMed 

Google Scholar 

Ramachandran, V. & Chen, X. Degradation of microRNAs by a family of exoribonucleases in Arabidopsis. Science 321, 1490–1492 (2008).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Shukla, S., Bjerke, G. A., Muhlrad, D., Yi, R. & Parker, R. The RNase PARN controls the levels of specific miRNAs that contribute to p53 regulation. Mol. Cell 73, 1204–1216.e4 (2019).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Yu, Y. et al. ARGONAUTE10 promotes the degradation of miR165/6 through the SDN1 and SDN2 exonucleases in Arabidopsis. PLoS Biol. 15, e2001272 (2017).Article 

PubMed Central 

PubMed 

Google Scholar 

Ibrahim, F. et al. Uridylation of mature miRNAs and siRNAs by the MUT68 nucleotidyltransferase promotes their degradation in Chlamydomonas. Proc. Natl Acad. Sci. USA 107, 3906–3911 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Chatterjee, S. & Grosshans, H. Active turnover modulates mature microRNA activity in Caenorhabditis elegans. Nature 461, 546–549 (2009).Article 

CAS 

PubMed 

Google Scholar 

Cazalla, D., Yario, T. & Steitz, J. A. Down-regulation of a host microRNA by a Herpesvirus saimiri noncoding RNA. Science 328, 1563–1566 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Marcinowski, L. et al. Degradation of cellular mir-27 by a novel, highly abundant viral transcript is important for efficient virus replication in vivo. PLoS Pathog. 8, e1002510 (2012).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Ghini, F. et al. Endogenous transcripts control miRNA levels and activity in mammalian cells by target-directed miRNA degradation. Nat. Commun. 9, 3119 (2018).Article 

PubMed Central 

PubMed 

Google Scholar 

de la Mata, M. et al. Potent degradation of neuronal miRNAs induced by highly complementary targets. EMBO Rep. https://doi.org/10.15252/embr.201540078 (2015).Article 

PubMed Central 

PubMed 

Google Scholar 

Ameres, S. L. et al. Target RNA-directed trimming and tailing of small silencing RNAs. Science 328, 1534–1539 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Ameres, S. L. & Zamore, P. D. Diversifying microRNA sequence and function. Nat. Rev. Mol. Cell Biol. 14, 475–488 (2013).Article 

CAS 

PubMed 

Google Scholar 

Yang, A. et al. AGO-bound mature miRNAs are oligouridylated by TUTs and subsequently degraded by DIS3L2. Nat. Commun. 11, 2765 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Yang, A. et al. TENT2, TUT4, and TUT7 selectively regulate miRNA sequence and abundance. Nat. Commun. 13, 5260 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Shi, C. Y. et al. The ZSWIM8 ubiquitin ligase mediates target-directed microRNA degradation. Science https://doi.org/10.1126/science.abc9359 (2020).Article 

PubMed Central 

PubMed 

Google Scholar 

Han, J. et al. A ubiquitin ligase mediates target-directed microRNA decay independently of tailing and trimming. Science https://doi.org/10.1126/science.abc9546 (2020). Together with Shi et al. (2020), this work reveals the regulatory mechanism of TDMD, via ZSWIM8-mediated Argonaute protein degradation.Article 

PubMed Central 

PubMed 

Google Scholar 

Piwecka, M. et al. Loss of a mammalian circular RNA locus causes miRNA deregulation and affects brain function. Science https://doi.org/10.1126/science.aam8526 (2017).Article 

PubMed 

Google Scholar 

Ulitsky, I., Shkumatava, A., Jan, C. H., Sive, H. & Bartel, D. P. Conserved function of lincRNAs in vertebrate embryonic development despite rapid sequence evolution. Cell 147, 1537–1550 (2011).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Kleaveland, B., Shi, C. Y., Stefano, J. & Bartel, D. P. A network of noncoding regulatory RNAs acts in the mammalian brain. Cell 174, 350–362.e17 (2018).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Donnelly, B. F. et al. The developmentally timed decay of an essential microRNA family is seed-sequence dependent. Cell Rep. 40, 111154 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Li, L. et al. Widespread microRNA degradation elements in target mRNAs can assist the encoded proteins. Genes Dev. 35, 1595–1609 (2021).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Bitetti, A. et al. microRNA degradation by a conserved target RNA regulates animal behavior. Nat. Struct. Mol. Biol. 25, 244–251 (2018).Article 

CAS 

PubMed 

Google Scholar 

Kingston, E. R., Blodgett, L. W. & Bartel, D. P. Endogenous transcripts direct microRNA degradation in Drosophila, and this targeted degradation is required for proper embryonic development. Mol. Cell 82, 3872–3884.e9 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Sheng, P. et al. Screening of Drosophila microRNA-degradation sequences reveals Argonaute1 mRNA’s role in regulating miR-999. Nat. Commun. 14, 2108 (2023).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Katoh, T. et al. Selective stabilization of mammalian microRNAs by 3′ adenylation mediated by the cytoplasmic poly(A) polymerase GLD-2. Genes Dev. 23, 433–438 (2009).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

D’Ambrogio, A., Gu, W., Udagawa, T., Mello, C. C. & Richter, J. D. Specific miRNA stabilization by Gld2-catalyzed monoadenylation. Cell Rep. https://doi.org/10.1016/j.celrep.2012.10.023 (2012).Article 

PubMed Central 

PubMed 

Google Scholar 

Jeong, H. C. et al. USB1 is a miRNA deadenylase that regulates hematopoietic development. Science 379, 901–907 (2023).Article 

CAS 

PubMed 

Google Scholar 

Mansur, F. et al. Gld2-catalyzed 3′ monoadenylation of miRNAs in the hippocampus has no detectable effect on their stability or on animal behavior. RNA 22, 1492–1499 (2016).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Vieux, K. F. et al. Screening by deep sequencing reveals mediators of microRNA tailing in C. elegans. Nucleic Acids Res. 49, 11167–11180 (2021).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Lee, S. et al. Promiscuous splicing-derived hairpins are dominant substrates of tailing-mediated defense of miRNA biogenesis in mammals. Cell Rep. 42, 112111 (2023).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Nishida, K. M. et al. Roles of R2D2, a cytoplasmic D2 body component, in the endogenous siRNA pathway in Drosophila. Mol. Cell 49, 680–691 (2013).Article 

CAS 

PubMed 

Google Scholar 

Drake, M. et al. A requirement for ERK dependent Dicer phosphorylation in coordinating oocyte-to-embryo transition in Caenorhabditis elegans. Dev. Cell 31, 614–628 (2014).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Shang, R. et al. Regulated dicing of pre-mir-144 via reshaping of its terminal loop. Nucleic acids Res. 50, 7637–7654 (2022).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Gutierrez-Perez, P. et al. miR-1 sustains muscle physiology by controlling V-ATPase complex assembly. Sci. Adv. 7, eabh1434 (2021).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Yang, B., Schwartz, M. & McJunkin, K. In vivo CRISPR screening for phenotypic targets of the mir-35-42 family in C. elegans. Genes Dev. 34, 1227–1238 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Ecsedi, M., Rausch, M. & Grosshans, H. The let-7 microRNA directs vulval development through a single target. Dev. Cell 32, 335–344 (2015).Article 

CAS 

PubMed 

Google Scholar 

Garaulet, D. L., Zhang, B., Wei, L., Li, E. & Lai, E. C. miRNAs and neural alternative polyadenylation specify the virgin behavioral state. Dev. Cell 54, 410–423 (2020).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Okamura, K., Hagen, J. W., Duan, H., Tyler, D. M. & Lai, E. C. The mirtron pathway generates microRNA-class regulatory RNAs in Drosophila. Cell 130, 89–100 (2007).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Ruby, J. G., Jan, C. H. & Bartel, D. P. Intronic microRNA precursors that bypass Drosha processing. Nature 448, 83–86 (2007). Together with Okamura et al. (2007), this work reports the first non-canonical miRNA pathway, in which intron splicing bypasses Drosha to generate pre-miRNA mimics, termed mirtrons.Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Bogerd, H. P. et al. A mammalian herpesvirus uses noncanonical expression and processing mechanisms to generate viral microRNAs. Mol. Cell 37, 135–142 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Xie, M. et al. Mammalian 5′-capped microRNA precursors that generate a single microRNA. Cell 155, 1568–1580 (2013).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Zamudio, J. R., Kelly, T. J. & Sharp, P. A. Argonaute-bound small RNAs from promoter-proximal RNA polymerase II. Cell 156, 920–934 (2014).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Cheloufi, S., Dos Santos, C. O., Chong, M. M. & Hannon, G. J. A dicer-independent miRNA biogenesis pathway that requires Ago catalysis. Nature 465, 584–589 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Cifuentes, D. et al. A novel miRNA processing pathway independent of dicer requires Argonaute2 catalytic activity. Science 328, 1694–1698 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Yang, J. S. et al. Conserved vertebrate mir-451 provides a platform for Dicer-independent, Ago2-mediated microRNA biogenesis. Proc. Natl Acad. Sci. USA 107, 15163–15168 (2010).Article 

CAS 

PubMed Central 

PubMed 

Google Scholar 

Download referencesAcknowledgementsThe authors thank G. La Rocca, B. Kleaveland and L. Joshua-Tor for critical reading, and the referees for informative comments. S.L. was supported by a training award from the NYSTEM contract #C32559GG and the Center for Stem Cell Biology at MSK. Work in E.C.L.’s group was supported by the National Institutes of Health (NIH) (R01-GM083300) and MSK Core Grant P30-CA008748. The authors apologize to those whose work is not included owing to space constraints.Author informationAuthors and AffiliationsDevelopmental Biology Program, Sloan Kettering Institute, New York, NY, USARenfu Shang, Seungjae Lee, Gayan Senavirathne & Eric C. LaiAuthorsRenfu ShangView author publicationsYou can also search for this author in

PubMed Google ScholarSeungjae LeeView author publicationsYou can also search for this author in

PubMed Google ScholarGayan SenavirathneView author publicationsYou can also search for this author in

PubMed Google ScholarEric C. LaiView author publicationsYou can also search for this author in

PubMed Google ScholarContributionsR.S., S.L., G.S. and E.C.L. wrote and edited the manuscript. R.S. S.L. and G.S. drafted the figures. R.S., S.L., G.S. and E.C.L. discussed and reviewed the manuscript before submission.Corresponding authorCorrespondence to

Eric C. Lai.Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Shuo Gu, Tuan Anh Nguyen, Ian Macrae who co-reviewed with Luca Gebert, and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional informationPublisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.Rights and permissionsSpringer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.Reprints and permissionsAbout this articleCite this articleShang, R., Lee, S., Senavirathne, G. et al. microRNAs in action: biogenesis, function and regulation.

Nat Rev Genet 24, 816–833 (2023). https://doi.org/10.1038/s41576-023-00611-yDownload citationAccepted: 27 April 2023Published: 28 June 2023Issue Date: December 2023DOI: https://doi.org/10.1038/s41576-023-00611-yShare this articleAnyone you share the following link with will be able to read this content:Get shareable linkSorry, a shareable link is not currently available for this article.Copy to clipboard

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

Brain-targeted delivery of neuroprotective survival gene minimizing hematopoietic cell contamination: implications for Parkinson’s disease treatment

Min Hak LeeSukyeong KangJin Woo Choi

Journal of Translational Medicine (2024)

Small noncoding RNAs and sperm nuclear basic proteins reflect the environmental impact on germ cells

Giulio FerreroRosaria FestaAlessio Naccarati

Molecular Medicine (2024)

Serum microRNA profile of rhesus macaques following ionizing radiation exposure and treatment with a medical countermeasure, Ex-Rad

Eric RussOluseyi O. FatanmiVijay K. Singh

Scientific Reports (2024)

Non-coding RNAs in disease: from mechanisms to therapeutics

Kinga NemethRecep BayraktarGeorge A. Calin

Nature Reviews Genetics (2024)

Substrate promiscuity of Dicer toward precursors of the let-7 family and their 3′-end modifications

Gunjan DadhwalHebatallah SamyPascale Legault

Cellular and Molecular Life Sciences (2024)

Access through your institution

Buy or subscribe

Access through your institution

Change institution

Buy or subscribe

Advertisement

Explore content

Research articles

Reviews & Analysis

News & Comment

Videos

Current issue

Collections

Follow us on Facebook

Follow us on Twitter

Subscribe

Sign up for alerts

RSS feed

About the journal

Aims & Scope

Journal Information

About the Editors

Journal Credits

Journal Metrics

Publishing model

Editorial input and checks

Editorial Values Statement

Editorial policies

Webcasts

Posters

Calendars

Conferences

Web Feeds

Contact

Reviews Cross-Journal Editorial Team

Publish with us

For Authors

For Referees

Submit manuscript

Search

Search articles by subject, keyword or author

Show results from

All journals

This journal

Search

Advanced search

Quick links

Explore articles by subject

Find a job

Guide to authors

Editorial policies

Nature Reviews Genetics (Nat Rev Genet)

ISSN 1471-0064 (online)

ISSN 1471-0056 (print)

nature.com sitemap

About Nature Portfolio

About us

Press releases

Press office

Contact us

Discover content

Journals A-Z

Articles by subject

Protocol Exchange

Nature Index

Publishing policies

Nature portfolio policies

Open access

Author & Researcher services

Reprints & permissions

Research data

Language editing

Scientific editing

Nature Masterclasses

Research Solutions

Libraries & institutions

Librarian service & tools

Librarian portal

Open research

Recommend to library

Advertising & partnerships

Advertising

Partnerships & Services

Media kits

Branded

content

Professional development

Nature Careers

Nature

Conferences

Regional websites

Nature Africa

Nature China

Nature India

Nature Italy

Nature Japan

Nature Korea

Nature Middle East

Privacy

Policy

Use

of cookies

Your privacy choices/Manage cookies

Legal

notice

Accessibility

statement

Terms & Conditions

Your US state privacy rights

© 2024 Springer Nature Limited

Close banner

Close

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Email address

Sign up

I agree my information will be processed in accordance with the Nature and Springer Nature Limited Privacy Policy.

Close banner

Close

Get the most important science stories of the day, free in your inbox.

Sign up for Nature Briefing

微小核糖核酸_百度百科

核酸_百度百科 网页新闻贴吧知道网盘图片视频地图文库资讯采购百科百度首页登录注册进入词条全站搜索帮助首页秒懂百科特色百科知识专题加入百科百科团队权威合作下载百科APP个人中心微小核糖核酸播报讨论上传视频医学术语收藏查看我的收藏0有用+10MicroRNA是长约22nt的非编码RNA,广泛存在于从病毒到人类的各种生物中。这些小RNA能够与mRNA结合阻断蛋白编码基因的表达,防止它们翻译成为蛋白。科学家们发现,microRNA与结直肠癌等肠道疾病关系密切,而且能进入线粒体控制其基因表达。中文名微小核糖核酸披    露四个方面的重要信息包    含食物中的任何核酸、蛋白质通    过母婴传播和通过肉食间接传递特    点1.长度一般为20~25个碱基2不同生物体内普遍存在目录1研究2跨物种谋杀3机制研究研究播报编辑披露了四个方面的重要信息:一是“食物中的任何核酸、蛋白质,在消化系统中都会被完全消化成核苷酸、氨基酸后被吸收”的观点被推翻了;二是有数据表明,微小核糖核酸非常稳定,不容易降解,能顺利进入血液,并长期滞留,发挥调控作用。并且能够通过母婴传播和通过肉食间接传递;三是已经发现了3000多个miRNA,其中大部分在动物体内起着关键性的调控作用,是最主要的基因表达调控因子之一。估计人体内大约2/3的基因都受到某个或一组miRNA的调控;四是miR-21是著名的原癌miRNA,几乎所有的癌症都有它参与。还有一些miRNA调控着胚胎和婴儿的发育,包括骨骼肌肉大脑心脏等几乎所有的脏器的发育。如果它们从食物进入人体发挥作用,就会导致产生畸形、人口素质(大脑智力等)异常(倒不一定是下降......)等现象。microRNA研究表明:转基因食品的风险还是存在的此前,在生物化学上所有人都一致认为:食物中的任何核酸、蛋白质,在消化系统中都会被完全消化成核苷酸、氨基酸,然后吸收到身体内,按照自身需求重新"组装"成自己的核酸和蛋白质。即使是以原型吸收的核酸和蛋白质也会被小肠上皮细胞和肝细胞降解,对于消化系统正常的人来说任何原始形态的核酸和蛋白质序列都不可能存在于到体内门静脉以外的血液中,更不可能发挥调控作用。然而,从最近的研究结果来看,这句话被推翻了。首先简要介绍一下微小核糖核酸。微小核糖核酸MicroRNA(miRNA)是一种小的内源性非编码RNA分子,大约由21-25个核苷酸组成。这些小的miRNA通常靶向一个或者多个mRNA,通过翻译水平的抑制或断裂靶标mRNAs而调节基因的表达。1993年,Lee,Feinbaum和Ambros等人发现在线虫体内存在一种RNA(lin-4),是一种不编码蛋白但可以生成一对小的RNA转录本,每一个转录本能在翻译水平通过抑制一种核蛋白lin-14的表达而调节了线虫的幼虫发育进程。对于出现这种现象的原因,科学家们猜测是由于基因lin-14的mRNA的3'UTR区独特的重复序列和lin-4之间有部分的序列互补造成的。在第一幼虫阶段的末期降低lin-14的表达将启动发育进程进入第二幼虫阶段。7年后科学家又发现了第二个miRNA-let-7,let-7相似于lin-4,同样可以调节线虫的发育进程。miRNA是十分特殊的RNA,序列非常短,只有22nt,但是有着超常的稳定性:在RNA酶中,一般RNA一小时候消化得干干净净没有任何残余,而miRNA在跟RNA酶混合后保温水解24小时竟然还保留近一半!后来,至今为止已经发现了3000多个miRNA,其中大部分在动物体内都起着关键性的调控作用,是最主要的基因表达调控因子之一,据估计人体内大约2/3的基因都受到某个或一组miRNA的调控。我研究的对象就是一个miRNA,它当然有着自己的名字,但是因为结果尚未发表,这一微小核糖核酸暂以miR-A代替。已知的是:这一miRNA的序列不存在于任何动物的基因组中。也就是说,动物(包括人)永远不可能自己转录产生这个miRNA。它本应该只存在于植物中。然而,在一次无意中的实验里,我们惊奇地发现小鼠血清中竟然存在这个miRNA。于是做了一系列的实验,最后发现:食物一般的核酸和蛋白质确实不能进入血液,但是miRNA,这一类特殊的调控分子,利用它极小的分子量和超常的稳定性,能顺利进入血液,并长期滞留,发挥其调控作用。而且,能够通过母婴传播、能够通过肉食进行间接传递。当然,miR-A大量存在于大米中,我们吃了几千年大米都没事,说明这个因子是无害的。但是其他有很多miRNA是有着极其重大的调控作用的。比如miR-21,它是著名的原癌miRNA,几乎所有的癌症都有它参与。还有一些miRNA调控着胚胎和婴儿的发育,包括骨骼肌肉大脑心脏等几乎所有的脏器都受到miRNA的调控。如果它们从食物进入人体导致异常,那么就会产生畸形、人口素质(大脑智力等)异常(倒不一定是下降......)等现象。这对转基因食品是一个巨大的打击。这一研究表明,转基因食品的风险还是存在的,依然有着很大的不可预见性。但是miRNA对一些生物因子的调控是很普遍的,比如前面提到的miR-21在癌症中的作用,同为原癌miRNA的还有miR-31,miR-203等。miR-143是抑癌的,miR-221/222控制着细胞周期,miR-155与免疫和类风湿性关节炎有关,等等。对于幼儿在母体中的胚胎发育,microRNA起着更重大的作用。miR-125a,miR-295,miR-219和miR-181b等等都与胚胎发育有关。miR-219过表达可以诱导胚胎细胞凋亡,基因沉默和过表达技术观察到斑马鱼受精卵在显微注射miR-219和反义miR-219后均导致其胚胎发育缺陷。miR-124a、miR-125b和miR-128的抑制会影响脑和脊髓的发育导致无脑儿。miR-124a/125b在感觉和运动神经元发育过程中发挥作用。从现有文献看,微小核糖核酸并非通过消化吸收而来。微小核糖核酸是由细胞自身表达,并作用于自身的调节物质 [1]。在异常细胞,如癌症细胞中,存在微小核糖核酸异常表达。其因果关系为,细胞癌变导致了微小核糖核酸异常表达,而非微小核糖核酸异常表达导致癌症。微小核糖核酸并不改变基因结构,而是对基因的表达产生影响,故微小核糖核酸并不致癌。前文所说的,微小核糖核酸能被完整吸收并导致癌症等疾病,并无可靠文献证明。跨物种谋杀播报编辑通过给小鼠喂食生大米,科学家发现它们的血液和肝脏中,MIR168a的浓度确实因为饮食中MIR168a的增加而增加了。增加后会产生什么其他的影响呢?要预测植物微小RNA的增加能造成什么样的生理结果,得先明白微小RNA是如何工作的。在细胞里,DNA像写满遗传信息的蓝图,在适当的时候被“复印”成信使RNA(mRNA),再去指导蛋白质的合成。而微小RNA就像杀手,非常有目标地找到自己要谋杀的信使RNA,让它们没法继续变出蛋白质。当然,微小RNA找目标不看照片,而是看信使RNA和它的匹配度,要是信使RNA上某些片段它们恰好能结合上去,这些信使RNA就被视为该死的目标。那么来自植物的MIR156a和MIR168a在动物体内的谋杀目标是谁呢?MIR168a经过序列比对,科学家们推测,它在动物体内确实有一个信使RNA目标,这个信使RNA指导合成“绑架”低密度脂蛋白的蛋白,这个绑架者主要分布在肝脏。也就是说,MIR156a和MIR168a这个微小RNA专门对付绑架者,MIR168a若是升高了,肝脏里绑架者就少了,低密度脂蛋白不受绑架,在血液里的浓度就会慢慢积累变高。果然,他们发现,吃了大米以后,小鼠体内MIR168a很快升高,3天后,血液中低密度脂蛋白胆固醇也变多了。这一切都验证了张辰宇的猜想,同时让科学界难以置信:来自植物的微小RNA竟然是一个超级杀手,可以跨物种执行谋杀任务!机制研究播报编辑根据以前的研究,张辰宇知道血液中的小囊泡可以把微小RNA装载起来,运送到身体其他部分,于是他猜测,小肠绒毛也可能把游离在附近的来自植物的微小RNA吞进来,包裹进小囊泡,再吐到血管里。随后,囊泡顺流而下,若是行至肝脏,这些囊泡可能被肝细胞吸收,微小RNA被释放,于是结合它的目标信使RNA,让低密度脂蛋白的绑架者减少,造成血液里的坏胆固醇升高。 这个过程听起来像破案故事一样激动人心!然而要想证明却非易事——想想,怎么才可能亲眼看到这个过程呢?科学家们也还没能在完整的生物体里证实这个猜想,只能说向这个方向做出了努力。张辰宇团队使用人体细胞模拟了上述场景。他们首先把大量合成的MIR168a微小RNA“喂”给体外培养的(也就是在平皿里培养的)人上皮细胞(小肠绒毛就是一种上皮细胞)。接着收集这些上皮细胞分泌的小囊泡。再转移给在另一个平皿里培养的肝脏细胞。然后他们发现, MIR168a所要谋杀的绑架者在肝脏细胞里的量果然减少了。这样的细胞实验确实证明了张辰宇的猜想的机制是可行的,然而它毕竟是在相互分隔的两种培养细胞之间做的,而不是在生物体的层面,所以这套机制只是被初步验证,远非确凿。想要确凿地说清植物微小RNA对人体的作用机制,还有待更精彩的实验。 由于张辰宇的研究颠覆常识,而且在几十种存活于人体的植物微小RNA中,只发现MIR168a这一种会对动物产生作用,因此有人认为他的结果或许是巧合。来自捷克科学院分子遗传学研究所(Institute of Molecular Genetics in the Czech Republic )的Petr Svoboda认为,在张辰宇的实验中,植物的微小RNA在人体内检测到的量很少,这个浓度的微小RNA是否真的能对人体产生影响值得怀疑。新手上路成长任务编辑入门编辑规则本人编辑我有疑问内容质疑在线客服官方贴吧意见反馈投诉建议举报不良信息未通过词条申诉投诉侵权信息封禁查询与解封©2024 Baidu 使用百度前必读 | 百科协议 | 隐私政策 | 百度百科合作平台 | 京ICP证030173号 京公网安备110000020000

关于microRNA - 丁香园

关于microRNA - 丁香园

丁香无线

丁香园论坛

丁香医生

新浪微博

丁香云管家

丁香智汇

丁香人才

RSS

登录

第三方登录

注册

论坛

神经

 

骨科

 

肿瘤

 

心血管

 更多

胸外

肾内

风湿免疫

感染

呼吸

消化

内分泌

论文基金

药品汇

健康互联

丁香六度

会议

医疗器械

检验

妇产

儿科

泌尿

麻醉

影像

普外

整形

眼科

神外

医院汇

精神

皮肤

口腔

重症

耳鼻喉

康复

丁香公开课

超声

血液

丁香园

肿瘤

频道首页

最新资讯

临床综述

指南共识

精彩幻灯

经典病例

丁香公开课

RSS

关于microRNA

2011-09-21 00:00

来源:欧易生物

作者:

字体大小

-

|

+

microRNAs (简称miRNA)是一类进化上高度保守的小分子非编码RNA,长度大约22nt左右,具有转录后调控基因表达的功能。第一个microRNA 于1993 年被发现。2000年之后,关于miRNA的研究取得了很大进展,目前已经有1000多个人类被发现,这些miRNA调控至少 30% 以上的基因表达,参与多种生理病理过程。 编码miRNA的基因可能位于功能基因编码区、非编码区,可能成簇表达或独立表达。在细胞核内,基因组DNA 转录生成较长的pri-pre-microRNA,之后被Drosha酶切割pri-pre-miRNA成形成长度大约70-100 碱基的、具发夹结构的pre- microRNA。这些发夹结构的RNA 被核输出蛋白exportin5转运到细胞质,在呗胞浆中的Dicer 酶切割形成19-23nt 大小的成熟的miRNAs 产物。成熟的单链miRNAs 与一系列蛋白形成miRNA诱导的沉默复合物(miRISC),结合于靶mRNA的3ˊ-UTR区,阻止所结合的mRNA 的翻译或直接降解靶miRNA。每个miRNA可以调控多个(甚至上百个)靶基因,而特定靶mRNA也可以同时被多个miRNAs调节。 成熟的miRNA具有如下特点:(1)通常的长度为20~24 nt , 但在3′端可以有1~2 个碱基的长度变化;(2)5′端有一磷酸基团, 3′端为羟基, 这一特点使它与大多数寡核苷酸和功能RNA 的降解片段区别开来;(3)具有高度保守性、时序性和组织特异性。 序列(特别是种子序列)高度同源的miRNA被归为一个miRNA家族,但这些miRNA并不一定是成簇表达的。例如miR-34 家族3个成员miR-34a、b、c,其中,miR-34a位于1号染色体1p36基因座位,单独表达;而miR-34b和-34c位于11号染色体11q23基因座位,成簇表达(图1),但它们都具有相同的种子序列(图1),并且都受到转录因子TP53的调控。同一miRNA家族成员功能近似(但靶基因并非完全相同)。   图1 miRNA-34 family成员 (from Hermeking H  Cell Death Differ.  2010,17(2) 193-9)  miRNA的表达为转录因子调控,其表达具有时空特异性和组织特异性。调控特定的生理过程。例如,肿瘤相关基因TP53和Myc分别调控促进凋亡的miRNA(例如miR34a,最近报道该miRNA亦靶向调控肿瘤干细胞biomarker CD44表达,)或抑制凋亡的miRNA(例如miR-21,该miRNA在多种肿瘤细胞中高表达),后者通过调控相应的靶mRNA,最终促进或抑制细胞凋亡(图2)。 和编码蛋白的mRNA相同,miRNA基因上游同样有启动子,启动子区的CpG导发生甲基化,也会影响下游基因表达。在一些肿瘤细胞(例如淋巴瘤)中,miR-34a上游CpG岛发生甲基化导致miR-34a表达水平降低;而在另一些肿瘤细胞(如胰腺癌)中,TP53突变产生同样结果,显示了miRNA表达调控的多层次。另外,基因缺失,重排等,以及环境因素,例如缺氧等,都会影响miRNA的表达。 图2 转录因子调节凋亡相关miRNA表达 (from Cortez MA t al Advances In Cancer Research, Vol 108) 目前,关于miRNA研究方法已经比较成熟,通过深度测序,可以发现未知的miRNA,miRNA芯片则可以很好鉴定研究组和对照组的差异miRNA,进而通过实时荧光定量PCR(q-PCR)加以验证。运用生物信息学分析以及数据挖掘,寻找miRNA可能的靶点以及靶序列,可能涉及的作用通路,之后进一步通过基因转染、过表达或抑制目标miRNA观察一些表型或基因表达变化,以探讨发现miRNA的作用机制。或研究miRNA与疾病的相关性,发展基于miRNA的诊断、疾病分型、预后判断、药效检测和治疗,都是目前miRNA研究的重要内容。从2000年至今,关于miRNA的文献已经超过10000篇,并且随着miRNA研究的不断深入,这个数字还在加速递增。 欧易生物追踪当前研究热点,发展了包括miRNA研究(芯片、深度测序、q-PCR)在内的,从基因组、转录组、表观遗传学到蛋白的完善技术服务体系,助力您的科学研究。 更多详情请关注 http://www.oebiotech.com

编辑:

莉莉

版权声明

本网站所有注明“来源:丁香园”的文字、图片和音视频资料,版权均属于丁香园所有,非经授权,任何媒体、网站或个人不得转载,授权转载时须注明“来源:丁香园”。本网所有转载文章系出于传递更多信息之目的,且明确注明来源和作者,不希望被转载的媒体或个人可与我们联系,我们将立即进行删除处理。同时转载内容不代表本站立场。

更多 >

胰腺癌相关文章

os

胰肠吻合技术要点,5 种方式都在这里了

os

2019AACR 癌症早筛新技术革新而临——5hmC(胰腺癌诊断标志物)高通量检测技术带来胰腺癌早筛新方向

os

要点学习:保留中段的胰腺切除术

更多 >

淋巴瘤相关文章

os

【课程上线】第11 届泛太湖白血病/淋巴瘤流式及遗传学进展与标准化协作组研讨会

os

西雅图遗传旗下淋巴瘤新药 Adcetris 获得 FDA 优先审查资格

os

CD5+弥漫性大B细胞淋巴瘤患者不良预后暂无法改善

近期热门文章

os

为何色斑反反复复复?可能是因为这个原因

os

都去吃!平价地道的海南美食一次性吃到爽

os

那些最会喝水的人,一定都有的神器

os

os

os

os

os

关注频道微信

纵览临床新进展

第一时间发布临床医学最新进展、指南共识、病例讨论、会议报道等信息。

关注频道微博

快速获悉最新信息

App下载

下载医学时间

每天10分钟成学霸

X

关注我们

手机扫一扫

关注丁香园微信号

丁香园旗下网站

丁香园

用药助手

丁香医生

丁香通

文献求助

Insight数据库

丁香人才

丁香导航

合作案例

丁香会议

丁香无线

丁当商城

调查派

丁香搜索

丁香云管家

丁香播咖

智能皮肤

医院汇

关于丁香园

关于我们

友情链接

联系我们

加入丁香园

网站声明

资料下载

资格证书

官方链接

丁香医生

丁香园新浪微博

An overview of microRNAs: Biology, functions, therapeutics, and analysis methods - PubMed

An overview of microRNAs: Biology, functions, therapeutics, and analysis methods - PubMed

This site needs JavaScript to work properly. Please enable it to take advantage of the complete set of features!

Clipboard, Search History, and several other advanced features are temporarily unavailable.

Skip to main page content

An official website of the United States government

Here's how you know

The .gov means it’s official.

Federal government websites often end in .gov or .mil. Before

sharing sensitive information, make sure you’re on a federal

government site.

The site is secure.

The https:// ensures that you are connecting to the

official website and that any information you provide is encrypted

and transmitted securely.

Log in

Show account info

Close

Account

Logged in as:

username

Dashboard

Publications

Account settings

Log out

Access keys

NCBI Homepage

MyNCBI Homepage

Main Content

Main Navigation

Search:

Search

Advanced

Clipboard

User Guide

Save

Email

Send to

Clipboard

My BibliographyCollectionsCitation manager

Display options

Display options

Format

Abstract

PubMed

PMID

Save citation to file

Format:

Summary (text)

PubMed

PMID

Abstract (text)

CSV

Create file

Cancel

Email citation

Subject:

1 selected item: 30471116 - PubMed

To:

From:

Format:

Summary

Summary (text)

Abstract

Abstract (text)

MeSH and other data

Send email

Cancel

Add to Collections

Create a new collection

Add to an existing collection

Name your collection:

Name must be less than 100 characters

Choose a collection:

Unable to load your collection due to an error

Please try again

Add

Cancel

Add to My Bibliography

My Bibliography

Unable to load your delegates due to an error

Please try again

Add

Cancel

Your saved search

Name of saved search:

Search terms:

Test search terms

Would you like email updates of new search results?

Saved Search Alert Radio Buttons

Yes

No

Email:

(change)

Frequency:

Monthly

Weekly

Daily

Which day?

The first Sunday

The first Monday

The first Tuesday

The first Wednesday

The first Thursday

The first Friday

The first Saturday

The first day

The first weekday

Which day?

Sunday

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Report format:

Summary

Summary (text)

Abstract

Abstract (text)

PubMed

Send at most:

1 item

5 items

10 items

20 items

50 items

100 items

200 items

Send even when there aren't any new results

Optional text in email:

Save

Cancel

Create a file for external citation management software

Create file

Cancel

Your RSS Feed

Name of RSS Feed:

Number of items displayed:

5

10

15

20

50

100

Create RSS

Cancel

RSS Link

Copy

Full text links

Wiley

Full text links

ActionsCiteCollectionsAdd to CollectionsCreate a new collectionAdd to an existing collection

Name your collection:

Name must be less than 100 characters

Choose a collection:

Unable to load your collection due to an errorPlease try again

Add

Cancel

Display options

Display options

Format

AbstractPubMedPMID

Share

Permalink

Copy

Page navigation

Title & authors

Abstract

Similar articles

Cited by

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Title & authors

Abstract

Similar articles

Cited by

Publication types

MeSH terms

Substances

Related information

LinkOut - more resources

Review

J Cell Physiol

Actions

Search in PubMed

Search in NLM Catalog

Add to Search

. 2019 May;234(5):5451-5465.

doi: 10.1002/jcp.27486.

Epub 2018 Nov 23.

An overview of microRNAs: Biology, functions, therapeutics, and analysis methods

Kioomars Saliminejad 

1

, Hamid Reza Khorram Khorshid 

2

, Shahrzad Soleymani Fard 

1

, Seyed Hamidollah Ghaffari 

1

Affiliations

Expand

Affiliations

1 Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.

2 Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

PMID:

30471116

DOI:

10.1002/jcp.27486

Item in Clipboard

Review

An overview of microRNAs: Biology, functions, therapeutics, and analysis methods

Kioomars Saliminejad et al.

J Cell Physiol.

2019 May.

Show details

Display options

Display options

Format

Abstract

PubMed

PMID

J Cell Physiol

Actions

Search in PubMed

Search in NLM Catalog

Add to Search

. 2019 May;234(5):5451-5465.

doi: 10.1002/jcp.27486.

Epub 2018 Nov 23.

Authors

Kioomars Saliminejad 

1

, Hamid Reza Khorram Khorshid 

2

, Shahrzad Soleymani Fard 

1

, Seyed Hamidollah Ghaffari 

1

Affiliations

1 Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.

2 Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.

PMID:

30471116

DOI:

10.1002/jcp.27486

Item in Clipboard

Full text links

CiteDisplay options

Display options

Format

AbstractPubMedPMID

Abstract

MicroRNAs (miRNAs) are a class of small noncoding RNAs, which function in posttranscriptional regulation of gene expression. They are powerful regulators of various cellular activities including cell growth, differentiation, development, and apoptosis. They have been linked to many diseases, and currently miRNA-mediated clinical trial has shown promising results for treatment of cancer and viral infection. This review provides an overview and update on miRNAs biogenesis, regulation of miRNAs expression, their biological functions, and role of miRNAs in epigenetics and cell-cell communication. In addition, alteration of miRNAs following exercise, their association with diseases, and therapeutic potential will be explained. Finally, miRNA bioinformatics tools and conventional methods for miRNA detection and quantification will be discussed.

Keywords:

epigenetics; gene expression; intercellular communication; microRNA; therapeutics.

© 2018 Wiley Periodicals, Inc.

PubMed Disclaimer

Similar articles

Recent trends in targeting miRNAs for cancer therapy.

Shah V, Shah J.

Shah V, et al.

J Pharm Pharmacol. 2020 Dec;72(12):1732-1749. doi: 10.1111/jphp.13351. Epub 2020 Aug 12.

J Pharm Pharmacol. 2020.

PMID: 32783235

Review.

miRNA and cancer; computational and experimental approaches.

Tutar Y.

Tutar Y.

Curr Pharm Biotechnol. 2014;15(5):429. doi: 10.2174/138920101505140828161335.

Curr Pharm Biotechnol. 2014.

PMID: 25189575

MicroRNA: Promising Roles in Cancer Therapy.

Hashemi A, Gorji-Bahri G.

Hashemi A, et al.

Curr Pharm Biotechnol. 2020;21(12):1186-1203. doi: 10.2174/1389201021666200420101613.

Curr Pharm Biotechnol. 2020.

PMID: 32310047

Review.

A Macro View of MicroRNAs: The Discovery of MicroRNAs and Their Role in Hematopoiesis and Hematologic Disease.

Weiss CN, Ito K.

Weiss CN, et al.

Int Rev Cell Mol Biol. 2017;334:99-175. doi: 10.1016/bs.ircmb.2017.03.007. Epub 2017 Apr 21.

Int Rev Cell Mol Biol. 2017.

PMID: 28838543

Free PMC article.

Review.

The Emerging Role of MitomiRs in the Pathophysiology of Human Disease.

Duarte FV, Palmeira CM, Rolo AP.

Duarte FV, et al.

Adv Exp Med Biol. 2015;888:123-54. doi: 10.1007/978-3-319-22671-2_8.

Adv Exp Med Biol. 2015.

PMID: 26663182

See all similar articles

Cited by

MiR206 and 423-3p Are Differently Modulated in Fast and Slow-Progressing Amyotrophic Lateral Sclerosis Patients.

Musarò A, Dobrowolny G, Cambieri C, Libonati L, Moret F, Casola I, Laurenzi G, Garibaldi M, Inghilleri M, Ceccanti M.

Musarò A, et al.

Neuromolecular Med. 2024 Mar 15;26(1):5. doi: 10.1007/s12017-024-08773-6.

Neuromolecular Med. 2024.

PMID: 38491246

miR-335-3p improves type II diabetes mellitus by IGF-1 regulating macrophage polarization.

Ju Z, Cui F, Mao Z, Li Z, Yi X, Zhou J, Cao J, Li X, Qian Z.

Ju Z, et al.

Open Med (Wars). 2024 Feb 29;19(1):20240912. doi: 10.1515/med-2024-0912. eCollection 2024.

Open Med (Wars). 2024.

PMID: 38463527

Free PMC article.

Catalytic Assembly of DNAzyme Integrates with Primer Exchange Reaction (CDiPER) for Highly Sensitive Detection of MicroRNA.

Zhang K, Li Y, Jiang S, Ju S.

Zhang K, et al.

ACS Omega. 2024 Feb 23;9(9):10897-10903. doi: 10.1021/acsomega.3c10003. eCollection 2024 Mar 5.

ACS Omega. 2024.

PMID: 38463245

Free PMC article.

Regulatory RNAs in immunosenescence.

Talepoor AG, Doroudchi M.

Talepoor AG, et al.

Immun Inflamm Dis. 2024 Mar;12(3):e1209. doi: 10.1002/iid3.1209.

Immun Inflamm Dis. 2024.

PMID: 38456619

Free PMC article.

Review.

Dysregulation and antimetastatic function of circLRIG1 modulated by miR-214-3p/LRIG1 axis in bladder carcinoma.

Cheng S, Li C, Liu L, Liu X, Li M, Zhuo J, Wang J, Zheng W, Wang Z.

Cheng S, et al.

Biol Direct. 2024 Mar 7;19(1):20. doi: 10.1186/s13062-023-00446-x.

Biol Direct. 2024.

PMID: 38454507

Free PMC article.

See all "Cited by" articles

Publication types

Review

Actions

Search in PubMed

Search in MeSH

Add to Search

MeSH terms

Animals

Actions

Search in PubMed

Search in MeSH

Add to Search

Cell Communication

Actions

Search in PubMed

Search in MeSH

Add to Search

Computational Biology

Actions

Search in PubMed

Search in MeSH

Add to Search

Epigenesis, Genetic

Actions

Search in PubMed

Search in MeSH

Add to Search

Exercise

Actions

Search in PubMed

Search in MeSH

Add to Search

Gene Expression Regulation

Actions

Search in PubMed

Search in MeSH

Add to Search

High-Throughput Nucleotide Sequencing

Actions

Search in PubMed

Search in MeSH

Add to Search

Humans

Actions

Search in PubMed

Search in MeSH

Add to Search

MicroRNAs* / genetics

Actions

Search in PubMed

Search in MeSH

Add to Search

MicroRNAs* / metabolism

Actions

Search in PubMed

Search in MeSH

Add to Search

MicroRNAs* / therapeutic use

Actions

Search in PubMed

Search in MeSH

Add to Search

Neoplasms / genetics

Actions

Search in PubMed

Search in MeSH

Add to Search

Neoplasms / metabolism

Actions

Search in PubMed

Search in MeSH

Add to Search

Neoplasms / therapy

Actions

Search in PubMed

Search in MeSH

Add to Search

Signal Transduction

Actions

Search in PubMed

Search in MeSH

Add to Search

Substances

MicroRNAs

Actions

Search in PubMed

Search in MeSH

Add to Search

Related information

MedGen

LinkOut - more resources

Full Text Sources

Wiley

Full text links

[x]

Wiley

[x]

Cite

Copy

Download .nbib

.nbib

Format:

AMA

APA

MLA

NLM

Send To

Clipboard

Email

Save

My Bibliography

Collections

Citation Manager

[x]

NCBI Literature Resources

MeSH

PMC

Bookshelf

Disclaimer

The PubMed wordmark and PubMed logo are registered trademarks of the U.S. Department of Health and Human Services (HHS). Unauthorized use of these marks is strictly prohibited.

Follow NCBI

Twitter

Facebook

LinkedIn

GitHub

Connect with NLM

Twitter

SM-Facebook

SM-Youtube

National Library of Medicine

8600 Rockville Pike

Bethesda, MD 20894

Web Policies

FOIA

HHS Vulnerability Disclosure

Help

Accessibility

Careers

NLM

NIH

HHS

USA.gov

miRNAs - Latest research and news | Nature

miRNAs - Latest research and news | Nature

Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain

the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in

Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles

and JavaScript.

Advertisement

View all journals

Search

Log in

nature

subjects

mirnas

miRNAs articles from across Nature Portfolio

Atom

RSS Feed

Definition

micro RNAs (miRNAs) are a type of non-coding RNA (ncRNA), ~21–24 nucleotides in length, that function in the post-transcriptional regulation of gene expression. Typically miRNAs interact with specific mRNAs through complementary base-pairing to influence the translation or stability of the target mRNA molecule.

Latest Research and Reviews

MicroRNA-221-3p inhibits the inflammatory response of keratinocytes by regulating the DYRK1A/STAT3 signaling pathway to promote wound healing in diabetes

The microRNA miR-221-3p inhibits the inflammatory response and promotes skin wound healing in diabetes by targeting DYRK1A expression, thereby regulating the DYRK1A/STAT3 signaling pathway.

Keyan HuLei LiuQiu Zhang

ResearchOpen Access09 Mar 2024

Communications Biology

Volume: 7, P: 300

LncRNA-SNHG5 mediates activation of hepatic stellate cells by regulating NF2 and Hippo pathway

LncRNA SNHG5 can regulate the Hippo pathway and EMT process by interacting with NF2 to mediate the activation of hepatic stellate cells.

Rongrong ZhangYating ZhanJianjian Zheng

ResearchOpen Access04 Mar 2024

Communications Biology

Volume: 7, P: 266

An essential role for the RNA helicase DDX6 in NMDA receptor-dependent gene silencing and dendritic spine shrinkage

Fathima M. PerooliKevin A. WilkinsonJonathan G. Hanley

ResearchOpen Access06 Feb 2024

Scientific Reports

Volume: 14, P: 3066

Tissue-specific profiling of age-dependent miRNAomic changes in Caenorhabditis elegans

Wang et al. profile age-dependent miRNAomic changes in worm tissues and extracellular vesicles (EVs). They show that ageing controls miRNAs in a tissue-specific manner and their findings further suggest a complex EV-mediated miRNA trafficking network across tissues.

Xueqing WangQuanlong JiangYidong Shen

ResearchOpen Access01 Feb 2024

Nature Communications

Volume: 15, P: 955

Circular RNA cVIM promotes hepatic stellate cell activation in liver fibrosis via miR-122-5p/miR-9-5p-mediated TGF-β signaling cascade

The circRNA cVIM may act as a sponge for miR-122-5p and miR-9-5p to enhance expression of TGFBR1 and TGFBR2 and promote activation of the TGF-β/Smad pathway, thereby accelerating the progression of liver fibrosis.

Zhenxu ZhouRongrong ZhangJianjian Zheng

ResearchOpen Access19 Jan 2024

Communications Biology

Volume: 7, P: 113

Screening and validation of optimal miRNA reference genes in different developing stages and tissues of Lilium henryi Baker

Ge JinXiuhai ZhangMingfang Zhang

ResearchOpen Access17 Jan 2024

Scientific Reports

Volume: 14, P: 1545

All Research & Reviews

News and Comment

A catalytic function for mammalian Argonautes

Joana Vidigal reminds us of the first paper to report an endogenous role of the nucleolytic activity of the mammalian RNAi protein argonaute-2.

Joana A. Vidigal

Research Highlights14 Feb 2024

Nature Reviews Molecular Cell Biology

P: 1

o8G modifications rewire tumoral microRNAs

RNA modifications have emerged as key gene regulators. A new study shows that increased levels of reactive oxygen species in cancer induce widespread, sequence-specific modifications of guanines in the seed regions of microRNAs, altering the targets of those miRNAs and influencing tumorigenesis.

Marta MontesMaite Huarte

News & Views07 Sept 2023

Nature Cell Biology

Volume: 25, P: 1243-1244

microRNAs as systemic regulators of ageing

Wagner et al. report an organism-wide map of non-coding RNA expression in ageing and rejuvenated mice, identifying a set of broadly deregulated microRNAs that may act as systemic regulators of ageing.

Linda Koch

Research Highlights10 May 2023

Nature Reviews Genetics

Volume: 24, P: 415

First demonstration of miRNA-dependent mRNA decay

Marina Chekulaeva describes the experiments that showed that microRNAs cause degradation of their target mRNAs.

Marina Chekulaeva

Research Highlights14 Nov 2022

Nature Reviews Molecular Cell Biology

Volume: 24, P: 164

Target-directed microRNA degradation in Drosophila

A report in Molecular Cell identifies six new triggers of target-directed miRNA degradation, which are essential for normal Drosophila melanogaster embryogenesis.

Dorothy Clyde

Research Highlights07 Oct 2022

Nature Reviews Genetics

Volume: 23, P: 713

microRNAs in aged sperm confer psychiatric symptoms to offspring through causing the dysfunction of estradiol signaling in early embryos

Gaoli LiangXiaoju ZhuXi Chen

CorrespondenceOpen Access05 Jul 2022

Cell Discovery

Volume: 8, P: 63

All News & Comment

Search

Search articles by subject, keyword or author

Show results from

All journals

Search

Advanced search

Quick links

Explore articles by subject

Find a job

Guide to authors

Editorial policies

Nature.com

nature.com sitemap

About Nature Portfolio

About us

Press releases

Press office

Contact us

Discover content

Journals A-Z

Articles by subject

Protocol Exchange

Nature Index

Publishing policies

Nature portfolio policies

Open access

Author & Researcher services

Reprints & permissions

Research data

Language editing

Scientific editing

Nature Masterclasses

Research Solutions

Libraries & institutions

Librarian service & tools

Librarian portal

Open research

Recommend to library

Advertising & partnerships

Advertising

Partnerships & Services

Media kits

Branded

content

Professional development

Nature Careers

Nature

Conferences

Regional websites

Nature Africa

Nature China

Nature India

Nature Italy

Nature Japan

Nature Korea

Nature Middle East

Privacy

Policy

Use

of cookies

Your privacy choices/Manage cookies

Legal

notice

Accessibility

statement

Terms & Conditions

Your US state privacy rights

© 2024 Springer Nature Limited